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Introduction

Annually, almost 500,000 women get a diagnosis of 
cervical cancer, resulting in more than 300,000 fatalities. 
Low- and middle-income countries comprise 90% of 
cervical cancer cases. In the last 30 years, organized 
screening programs have shown decreased cervical 
cancer incidence and mortality in high-income countries 
by around 50%. The severity of the disease influences 
diagnostic , therapeutic alternatives and local resources. 
A radical hysterectomy, chemotherapy, or a combination of 
both may be necessary [1]. Findings from five randomized 
clinical investigations indicate [2-7], Invasive cervical 
cancer patients who meet eligibility criteria should 
receive cisplatin-based chemoradiotherapy in conjunction 
with radiation therapy. A recent review of 18 trials 
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conducted across 11 countries indicates that combination 
chemoradiation enhances prognosis. The research 
demonstrated a 12% enhancement in overall survival 
rates [8, 9].

Cervical cancer is often treated with chemotherapy, 
yet its side effects necessitate the exploration of safer 
alternatives. In conjunction with this problem, Multiple 
initiatives have been pursued to discover a more effective 
and safer alternative treatment for cancer, including the 
use of drugs that are already employed for the treatment of 
various diseases other than cancer.

Ciprofloxacin is an antibiotic agent that has shown 
potential anticancer activities in many investigations; one 
such study found that ciprofloxacin significantly inhibits 
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the growth of transitional cell carcinoma cells [10]. 
A distinct study indicates that Fluoroquinolone antibiotics 
induce cell death in breast cancer cells, dependent on 
the dosage and duration of therapy. Cell death can occur 
through various mechanisms, including the activation of 
apoptosis, increased expression of p53, Bax, and Bcl-2 
proteins, alterations in cell cycle distribution, DNA 
fragmentation, disruption of mitochondrial function 
via the Bax/Bcl-2 pathway, S-phase cell cycle arrest, 
and inhibition of topoisomerase II. Moreover, studies 
demonstrate that oligonucleosomal DNA fragmentation 
is associated with increased p53 expression [11, 12].
Additional studies have implicated that Ciprofloxacin 
inhibits the proliferation of hepatocellular carcinoma 
cell lines by inducing DNA breaks and obstructing 
topoisomerases. When co-administered with cisplatin, it 
has a synergistic effect [13, 14].

Metformin, a medication often prescribed for diabetes, 
has shown effectiveness in lowering the risk of various 
cancers, including pancreatic cancer [15, 16]. The latest 
study shows that metformin significantly lowers the risk 
of colon cancer and its mortality rate [17, 18]. Metformin 
significantly reduces the occurrence of adenomas and 
polyps in patients undergoing polypectomy [19]. Another 
study suggests that metformin decreases the risk of 
developing prostate and liver cancer, as well as lowering 
mortality rates associated with these cancers [20-24].  

Multiple mechanisms have been studied to explore 
metformin’s anticancer effects. Metformin activates 
AMPK in rat hepatoma cells, reducing the phosphorylation 
of pS6 [25]. A study conducted in vitro showed that 
metformin directly inhibited AMP deaminase, resulting in 
increased AMP levels and subsequent activation of AMPK 
[26]. A recent study suggests that compounds inhibiting 
mitochondrial complex I within the respiratory system can 
increase AMP concentrations, which in turn trigger the 
activation of AMPK. This activation plays a crucial role 
in inhibiting mTOR, thereby initiating signaling pathways 
that promote cellular growth [27, 28]. Metformin may 
help remove active K-ras from the cellular membrane 
through a mechanism dependent on protein kinase C 
(PKC). However, there is no empirical evidence of a 
direct interaction between metformin and K-ras. Research 
shows that metformin interacts with and disassembles the 
PP2A complex in neuronal cells. Furthermore, there is a 
potential for inhibiting the activity of the PP2A-dependent 
phosphatase [29]. 

Numerous recent studies have focused on specific 
molecular pathways in cancer, particularly the c-src 
tyrosine kinase, which plays a significant role in cancer 
incidence due to its involvement in various signalling 
cascades [30]. Src engages with distinct protein-tyrosine 
kinase receptors situated within the plasma membrane. 
This engagement enables a reciprocal transfer of signals, 
whereby the receptors can modulate the activity of 
Src, while Src simultaneously influences the receptors’ 
behavior. Of particular significance, Src binds with 
EGFR (ErbB1) and ErbB2, both of which are crucial 
protein-tyrosine kinase receptors. Alterations in EGFR 
are frequently observed in cases of non-small cell lung 

carcinoma, whereas the overexpression of ErbB2 is 
associated with breast carcinoma. Additionally, the 
ErbB family is implicated in various other malignancies, 
including colorectal, gastric, head and neck, and pancreatic 
cancers [31, 32]. Furthermore, Src tyrosine kinase 
interacts with c-MET, also known as the hepatocyte 
growth factor receptor (HGFR). This receptor, which 
is a protein-tyrosine kinase, is essential in numerous 
biological processes, such as embryonic development, 
wound healing, and cellular functions migration [33, 34]. 
HGF is synthesized by mesenchymal cells, whereas 
c-Met is produced by epithelial cells. The dysregulation 
of c-Met has been associated with various cancers, 
including those of the bladder, brain, breast, kidney, 
liver, pancreas, prostate, stomach, and non-small cell 
lung. Numerous human malignancies exhibit abnormal 
activation of this pathway, attributed to factors such as 
overexpression of proteins, mutations, gene amplification, 
and increased receptor-ligand interactions. Additionally, 
mutations within the c-MET gene have been detected 
in the tyrosine kinase domain [35, 36], Juxta membrane 
domain [37], and extracellular domain [38, 39] of diverse 
solid tumors, encompassing both hereditary and sporadic 
human papillary renal carcinomas, lung cancer, ovarian 
cancer, childhood hepatocellular carcinomas, head 
and neck squamous cell carcinoma, and gastric cancer 
[33, 40-42]. The overexpression of c-Met is linked to 
increased invasion, migration, and metastasis disease 
[43, 44]. Another type of protein tyrosine kinase receptor 
that is regulated by c-src tyrosine kinase is Platelet-derived 
growth factor (PDGF). PDGF signaling plays a role in 
cellular division, proliferation, migration, survival, and 
angiogenesis. Platelet-derived growth factor (PDGF) 
transmits signals through its receptor protein-tyrosine 
kinases, known as PDGFRα and PDGFRβ. The activity 
of the PDGFR is linked to several types of cancer, 
including breast, colorectal, and prostate cancers, as well 
as gastrointestinal stromal tumors (GISTs), glioblastoma, 
osteosarcoma, non-small cell lung cancer (NSCLC), and 
neuroblastoma. Point mutations in the PDGFRα gene are 
found in approximately 5% of human gastrointestinal 
stromal tumors (GISTs).

In about 5 to 10% of glioblastoma cases, there is 
an observed increase in the expression of this gene. 
The PDGFRα gene amplification has been found 
in oligodendrogliomas, esophageal squamous cell 
carcinomas, and sarcomas of the arterial intima. 
The activation of both PDGFRα and PDGFRβ plays a 
vital role in enabling cellular invasion and metastasis. 
Additionally, insulin-like growth factors such as IGF-1 
and IGF-2 are involved in various biological processes, 
including cell division, growth, survival, angiogenesis, 
wound healing, and embryonic development [45, 46]. 

Regarding the crucial role of c-src tyrosine kinase 
in cancer, multiple efforts will be made to target it to 
establish effective and selective cancer therapies. In this 
aspect, several agents will develop .as. Dasatinib [47], 
Saracatinib [48], Bosutinib [49], and KX2-391 [50]. Even 
though these selective anticancer drugs are available, 
there are still some limitations in their use, including 
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the proliferation of cervical cancer cells and their cytotoxic 
effects on human fibroblast cells. The experiments 
were conducted by culturing these cell lines in 96-well 
microtiter plates. During the logarithmic growth phase, 
cancer cell proliferation showed a steady and gradual 
increase. The treatments’ cytotoxic effects were examined 
over two incubation periods: 24 and 72 hours [61].

Ten percent fetal bovine serum is required to inoculate 
10,000 cells in each well. The plates were incubated 
at 37°C for 24 hours to facilitate cell attachment. 
Subsequently, serial dilutions of ciprofloxacin, metformin, 
and cisplatin were prepared in RPMI medium free of calf 
serum. Dilutions from 0.1 to 1000 µg/ml were created for 
each compound treatment [57, 62].

After 24 hours of cancer cell proliferation, each 
treatment concentration was assigned to six wells, with 
each well receiving 200 µl of RPMI media containing the 
medication. Control wells received 200 µl of maintenance 
media, and the exposure durations varied from 24 to 72 
hours. After treatment, the plates were securely attached 
with self-adhesive material and reinserted into the 
incubator. Subsequently, MTT dye was employed to stain 
the treated cells.

(ELISA reader) was employed to determine the 
optical density of the microtiter plate wells at a 550 nm 
transmission wavelength [63, 64]. 

The following mathematical equation is utilized to 
determine the growth inhibition rate [64].

Growth inhibition %= (optical density of control 
wells-optical density of treated wells)/(optical density of 
control wells)*100%

IC50 values for Ciprofloxacin, metformin, cisplatin, and 
(Ciprofloxacin- metformin) combination were determined 
for each incubation duration using GraphPad Prism, 
version 9.5.0 (2022).

Selective toxicity index
This assay was conducted to examine the selective 

toxicity of the ciprofloxacin-metformin combination and 
cisplatin on cancer cells over two incubation periods: 
24 hours and 72 hours. The selective cytotoxicity index 
was computed using the specified formula, following 
the estimation of the combination’s IC50 level through 
cell proliferation curves for both HeLa and HFF cells 
lines [65]. Cisplatin’s selective toxicity was utilized for 
comparison purposes. 

Selective toxicity Index (SI)=(IC50 of normal cell 
lines)/(IC50 of cancer cell lines)×100

An SI greater than 1.0 suggests a drug exhibits higher 
efficacy against tumor cells than its toxicity towards 
normal cells.

Study of drug combinations
A study was performed to investigate the collective 

impact of multiple drugs. This evaluation involved 
generating concentration-effect curves that illustrated the 
proportion of cells with decreased growth corresponding to 
drug concentration following 24 and 72 hours of treatment. 
The drug interactions were analyzed for synergy, additive 
effects, and antagonism through Compusyn software 

financial constraints and serious adverse effects, such as 
myelosuppression. Cardiovascular complications include 
QT interval prolongation and arrhythmias, in addition to 
bleeding complications and Liver toxicity [51-54].

Mixing current drugs that are utilized for non-cancer 
therapeutic purposes offers a viable approach to 
developing an effective and safer cancer therapy. 
Numerous studies explore this subject, with one 
showing that the amalgamation of amygdalin and 
esomeprazole successfully eliminates cervical cancer 
cells. The efficacy of this combination was contingent 
upon the medicine concentration and the incubation 
length [55, 56]. The evaluation demonstrated that the 
combination of ciprofloxacin and laetrile effectively 
inhibits the proliferation of esophageal cancer cells.
[57]. A separate study demonstrated that esomeprazole-
amygdaline inhibits the proliferation of the HeLa cancer 
cell line in a concentration- and time-dependent manner.
[58] Numerous studies have investigated the anticancer 
properties of ciprofloxacin and metformin, but most 
have focused on each drug individually. The existing 
literature often fails to comprehensively demonstrate 
the effectiveness of combining these two agents in 
targeting c-src tyrosine kinase specifically in cervical 
cancer. Notably, these identified limitations highlight 
a significant gap in current research, emphasizing the 
need for further investigation to clarify the mechanisms 
and potential therapeutic benefits of this combination 
approach. To address this gap, the present study aims 
to systematically examine the inhibitory effects of 
the ciprofloxacin and metformin combination on the 
proliferation of cervical cancer cells, while simultaneously 
assessing their effectiveness in modulating c-src tyrosine 
kinase activity.

Materials and Methods

Study medications
The Samarra Pharmaceutical Factory supplied the 

study medications as raw materials. The drugs were 
diluted with RPMI medium to produce concentrations 
ranging from 0.1 µg/ml to 1000 µg/ml. For each drug 
in the mixture, the concentrations of ciprofloxacin 
and metformin fluctuated between 0.05 and 50 µg/ml, 
resulting in a final concentration from 0.1 to 1000 µg/ml.

Cell lines
The tissue culture section at ICCMGR produced the 

HeLa and HFF cell lines from malignant cervical cancer 
and human fibroblasts, respectively. Cells were cultured 
in 75 cm² flasks at 37°C with a 5% CO2 concentration. 
Ten percent fetal bovine serum (FBS), and to combat 
bacterial contamination, one hundred units per milliliter 
of penicillin-streptomycin and other incubation factors 
were used to grow the cells [59, 60]. 

Cytotoxicity assay
Ciprofloxacin, metformin, cisplatin, and the 

combination of ciprofloxacin and metformin were 
thoroughly evaluated for their effectiveness in inhibiting 
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(Biosoft, Ferguson, MO, USA), which calculated the 
combination index and dose reduction index values.

Values of the confidence interval (CI) that are below 
1 indicate synergy; values above 1 imply additivity; and 
those exceeding 1 denote antagonism. The dose reduction 
index (DRI) assesses the extent to which the concentration 
of individual components in a mixture can be decreased 
while still achieving effectiveness similar to that obtained 
through the independent use of each drug. A DRI score 
of 1 means that a dose reduction is not favourable. If the 
DRI exceeds 1, this indicates a beneficial dose reduction, 
while a DRI below 1 reflects an unfavorable decrease in 
dosage [66, 67].

Molecular docking
ChemDraw software (Cambridge Soft, USA) 

was employed to illustrate the chemical structures of 
ciprofloxacin and metformin, which were then refined 
with the Chem3D version. Protein Data Bank was 
referenced to get the molecular structure of Cytoplasmic 
SRC Tyrosine Kinase (PDB: 1fmk). 

Protein structures were optimized and adjusted 
utilizing AutoDock Tools. The optimal conformation 
of the ligands was established using AutoDock Tools, 
subsequently generating a PDBQT file for the ligands. 

Following optimization, the structures of each ligand 
(ciprofloxacin and metformin) and receptor (Cytoplasmic 
SRC Tyrosine Kinase) were included in AutoDock-
Tools. The docking procedure was performed using the 
same program. The docking energy scores and binding 
interactions were analyzed using PLIP and BIOVIA 
Discovery Studio [68, 69].

Ethical approval
This research strictly used in vitro cell line models, 

avoiding the involvement of human subjects or laboratory 
animals. All methodologies followed the ethical standards 
set by the institution for laboratory studies.

Statistical Analysis
The MTT assay results are presented as the mean ± 

standard deviation (SD) based on six replicates. A one-way 
analysis of variance (ANOVA) was utilized. The Tukey 
and LSD tests were employed to compare various groups. 
The study used statistical software version 20, setting a 
significance threshold at p < 0.05 [70].

The study employed both uppercase and lowercase 
letters in its data tables to distinguish various statistical 
groups and significance levels. Means (averages) 
represented by the same letters indicate no significant 
difference, while those with different letters signal 
statistical significance. Uppercase letters are used for 
comparisons of row means, while lowercase letters are for 
column means. This method effectively conveys complex 
statistical results clearly and accessibly, removing the need 
for lengthy explanations. As a result, readers can quickly 
identify which groups are similar or different according 
to the assigned letters.

Results

Cytotoxicity assay

Ciprofloxacin cytotoxicity
The study’s findings demonstrated that ciprofloxacin 

significantly inhibits the proliferation of cervical cancer 
cells. The inhibition pattern significantly depended on 
drug concentration, as evidenced by the varying growth 
inhibition observed at higher and lower concentrations. 
The inhibition pattern significantly depended on the 
incubation duration, as evidenced by the decrease in IC50 
from the 24-hour to the 72-hour incubation period. The 
results of ciprofloxacin growth inhibition patterns were 
influenced by both concentration and incubation time: 
Table 1 and Figure 1. 

Metformin cytotoxicity
The study reveals that metformin inhibits the growth 

of cervical cancer cells. The inhibition effect shows a 
strong dependence on concentration, highlighted by the 
varied growth inhibition across all concentrations during 
each incubation period. Furthermore, the inhibition 
pattern changes with the duration of incubation, as shown 
by the differences in IC 50 values between 72-hour and 
24-hour incubations: Table 2, Figure 2.

Cisplatin cytotoxicity
The cytotoxic effects of cisplatin on the HeLa cancer 

cell line indicate that higher drug concentrations and 
longer incubation times correlate with increased inhibition 
rates. Growth inhibition varies significantly across 
concentrations during each incubation period. The results 

Table 1. The Impact of Ciprofloxacin on the Survival of HeLa Cancer Cells after 24 and 72 hours
Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SD a) P- value

24 hr. 72 hr.
0.1 C 0.00 ± 0.000 C 1.00 ± 1.000 0.158
1 C 0.00 ± 0.000 C 6.00 ± 2.000 0.007*
10 C 4.00 ± 2.000 B 24.00 ± 3.000 0.001*
100 B 21.00 ± 1.000 A 37.00 ± 4.000 0.003*
1000 A 34.00 ± 4.000 A 43.00 ± 3.000 0.036*
b LSD value 7.46 10.16 -
IC 50 1486.9 µg/ml 1174.2 µg/ml -

*, significant at (P<0.05)
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revealed a notable difference in growth inhibition across 
various incubation periods for all concentrations, as 
evidenced by a decrease in the IC50 value at 72 hours 
compared to the 24-hour incubation period. 

In contrast, the findings revealed that cisplatin 
affected the HFF cell line, with growth inhibition patterns 
depending on concentration and incubation duration. 

The percentage of growth inhibition is significantly 
comparable to its cytotoxicity against the HeLa cell line 
(Table 3, Figure 3).

(ciprofloxacin -metformin) combination cytotoxicity
The study revealed that combining ciprofloxacin 

with metformin led to a significant reduction in the 
proliferation of cervical cancer cells. The concentration 
of the drugs significantly affected the inhibition pattern, as 
shown by the variations in growth inhibition observed at 
higher concentrations compared to lower concentrations. 
The incubation duration significantly influenced the 
inhibition pattern, as indicated by the marked differences 
in growth inhibition at all concentrations between the 
two incubation periods. The decrease in IC50 observed 
during the 72-hour incubation compared to the 24-hour 
incubation further supports this finding. The pattern 
of growth inhibition resulting from the ciprofloxacin-
metformin combination is affected by concentration and 
incubation duration (Table 4) (Figure 4).

The combination of ciprofloxacin and metformin 
demonstrates low cytotoxicity on normal cells (HFF cell 
line) compared to its impact on cervical cancer cells. The 
comparison results indicated a significant difference in 
growth inhibition across all concentrations between the 
mixture’s impact on the HeLa and HFF cell lines (Table 5) 
(Figure 5).

Additionally, a comparison of the cytotoxic effects of 
the mixture with ciprofloxacin, metformin, and cisplatin 
demonstrated that the mixture’s cytotoxicity was more 
significant across all incubation periods. (Table 6, 7) 
(Figure 6, 7, 13) .

Figure 1. The Influence of Ciprofloxacin on the Viability 
of HeLa Cancer Cells at 24 and 72 hours

Figure 2. The Influence of Metformin on the Viability of 
HeLa Cancer Cells at 24 and 72 hours

Table 2. Metformin's effect on the Viability of HeLa Cancer Cells after 24 and 72 hours
Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SD a) P- value

24 hr. 72 hr.
0.1 C 0.00 ± 0.000 D 2.00 ± 2.000 0.158
1 C 1.00 ± 1.000 C 14.00 ± 1.000 0.0001* 
10 BC 5.00 ± 2.000 C 20.00 ± 3.000 0.002* 
100 B 17.00 ± 4.000 B 30.33 ± 3.055 0.010* 
1000 A 29.00 ± 7.000 A 44.00 ± 2.000 0.023* 
b LSD value 13.62 8.5
IC 50 1793.2 µg/ml 1158 µg/ml

*, significant at (P<0.05)

Table 3. Cisplatin's impact on HeLa and HFF Cell Line Proliferation at 24 and 72 hours.
Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SDa)

HeLa cell line HFF cell line
24 hr. 72 hr. P- value 24 hr. 72 hr. P- value

0.1 D 1.00 ± 1.000 D 4.00 ± 2.000 0.081 C 0.00 ± 0.000 D 7.00 ± 2.000 0.004*
1 CD 3.00 ± 2.000 D 11.00 ± 1.000 0.003* C 1.00 ± 1.000 D 13.00 ± 3.000 0.003*
10 C 8.00 ± 1.000 C 23.00 ± 3.000 0.001* C 7.00 ± 1.000 C 37.00 ± 3.000 0.000*
100 B 25.00 ± 3.000 B 44.00 ± 4.000 0.003* B 29.00 ± 2.000 B 57.00 ± 2.000 0.000*
1000 A 36.00 ± 3.000 A 67.00 ± 1.000 0.0001* A 47.00 ± 5.000 A 75.00 ± 5.000 0.002*
b LSD value 7.98 9.06 - 9.06 11.62 -
IC 50 1420.4 µg/ml 622.1 µg/ml - 1032 µg/ml 460.5 µg/ml -
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Studying drug combinations
The study investigating the effects of ciprofloxacin and 

metformin combinations yielded the following findings. 
Following incubation periods of 24 and 72 hours, the 
mixture of ciprofloxacin and metformin at concentrations 
of 0.1, 1, and 10 µg/ml exhibited very strong synergistic 
anticancer properties. In contrast, a concentration of 100 
µg/ml displayed strong synergy.

A concentration of 1000 µg/ml of the mixture 
displayed synergism and strong synergism during the 
24- and 72-hour incubations, respectively.

The findings of the dose reduction index revealed that 
the concentrations of the mixture’s ingredients necessary 
to induce cytotoxicity decreased at both 24 and 72 hours 
of incubation across all concentrations of ciprofloxacin 
and metformin. This indicates a positive reduction in 
the effective concentration of the mixture components 
(Table 8, 9) (Figure 8, 9).

Selective toxicity index
The study findings demonstrated that the selective 

toxicity index score of the ciprofloxacin-metformin 
combination was 7.36 and 10 for 24 and 72 hours, 
respectively. Suggests selectively targeting cervical cancer 
cells over normal healthy cells, with an increase in the 
selectivity index corresponding to longer incubation times. 
In contrast, Cisplatin’s selective toxicity index score was 
0.72 and 0.74 for 24 and 72 hours, respectively, indicating 
the lowered selectivity toxicity (Table 10) (Figure 10).

Molecular docking studies
Molecular docking modelling investigated the 

interaction between ciprofloxacin and metformin with 
c-Src tyrosine kinase (PDB code: 1fmk). The study utilized 
AutoDock tools version 1.5.7 and BIOVIA Discovery 
Studio [71].

The results of our molecular docking studies indicated 
that the docking score of ciprofloxacin with c-Src tyrosine 
kinase was (-7.9) kcal/mol. Molecular docking analysis 

Figure 3. Cisplatin Impact on HeLa (left) and HFF (right) Cell Line Proliferation at 24 and 72 hours

Figure 4. The Influence of Ciprofloxacin-metformin Combination on the Viability of the HeLa cell line (left) and HFF 
Cell Line (right) at 24 and 72 hours

Table 4. The Influence of Ciprofloxacin-metformin Combination on the Viability of HeLa Cancer Cells at 24 and 72 
hours
Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SDa)

HeLa cell line HFF cell line
24 hr. 72 hr. P- value 24 hr. 72 hr. P- value

0.1 C 4.00 ± 2.000 C 15.00 ± 5.000 0.024* B 0.00 ±  0.000 D 0.00 ± 0.000 N.S
1 C 11.00 ± 3.000 C 17.00 ± 4.000 0.106 B 0.00 ± 0.000 CD 2.00 ± 1.000 0.26
10 B 27.00 ± 4.000 B 43.00 ± 3.000 0.005* A 2.00 ± 2.000 BDC 6.00 ± 2.000 0.07
100 B 38.00 ± 3.000 B 52.00 ± 2.000 0.003* A 7.00 ± 2.000 AB 10.00 ± 2.000 0.14
1000 A 53.00 ± 3.000 A 69.00 ± 1.000 0.001* A 9.00 ± 4.000 A 13.00 ± 3.000 0.238
b LSD value 11.16 12.06 - 7.98 6.9 -
IC 50 870.2 µg/ml 487.8 µg/ml - 6408.7 µg/ml 4881.7 µg/ml -

*, significant at (P<0.05)
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was presented. 
Two carbon-hydrogen bonds were set up with the ASP 

A:404 a.a. residue at 3.64 Å distance and LEU A:273 
a.a. residues at 3.50 Å distance. Two halogen (fluorine) 
bonds set up with the MET A:341 a.a residues at 3.21 Å 
distance and SER A:342 a.a residues at 3.45 Å distance. 
Three pi-sigma bonds were set up with the LEU A:273 
a.a residues at 3.45 Å distance, VAL A:281 a.a residues 
at 3.74 Å distance, and LEU A:393 a.a residues at 3.56 Å 
distance. Two pi-alkyl bonds set up with the LEU A:273 
a.a residues at 4.98 Å distance and LEU A:303 a.a residues 
at 5.29 Å distance.  Finally, one alkyl bond was set up with 
VAL A:281 a.a residues at 3.99 Å distances (Figure 10).

Furthermore, molecular docking study data of 
metformin with c-Src tyrosine kinase revealed a total 
docking score of (-5.1) kcal/mol. Molecular docking 
analysis was presented. Six conventional hydrogen-bound 
sets up with two GLU A: 146, two TYR A: 149, one GLN 

A: 144, and one GLU A: 147, a.a. residues at 2.86 Å, 
2.29 Å, 2.51 Å,2.18 Å,2.42 Å, and 2.34 Å of distance, 
respectively. One carbon-hydrogen bound with LEU A:89 
a.a. residue at 3.43 Å distances (Figure 11).

For comparison purposes, molecular docking study 
data of bosutinib (c-Src tyrosine kinase inhibitor) revealed 
a total docking score of ( -8.1) kcal/mol. It formed one 
Conventional hydrogen bond with the LYS A:401 a.a. 
residues at 2.04 Å. Seven carbon hydrogen bonds with 
two TYR A: 149, one ARG A: 160, one TYR A: 90, one 
SER A: 248, PHE A: 150, and LEU A: 248, a.a residues 
at 3.69 Å, 3.73 Å, 3.35 Å,3.37 Å,3.31 Å, 3.33 Å and 
3.65 Å of distance, respectively. One carbon-hydrogen 
bond with GLY A:135 a.a residues at 2.77 Å of distance. 
Two pi-Anion bonds with two GLU A:320 a.a residues 
at 4.05 Å and 3.93 Å of distance. One alkyl bond with 
MET A:341 a.a residues at 5.28 Å distance. Finally, with 
three pi-alkyl bonds with ILE A:153, LEU A:161, and 

Table 5. Comparison of the Growth Inhibition of Ciprofloxacin-metformin Combination between HeLa and HFF Cell 
Lines.

Concentration (µg/ml) Inhibition of cellular proliferation (mean ± SDa)
24 hrs. 72 hrs.

Hela HFF P- value Hela HFF P- value
0.1 C 4.00 ± 2.000 B 0.00 ± 0.000 0.026* C 15.00 ± 5.000 D 0.00 ± 0.000 0.007*
1 C 11.00 ± 3.000 B 0.00 ± 0.000 0.003* C 17.00 ± 4.000 CD 2.00 ± 1.000 0.003*
10 B 27.00 ± 4.000 A 2.00 ± 2.000 0.001* B 43.00 ± 3.000 BDC 6.00 ± 2.000 0.0001*
100 B 38.00 ± 3.000 A 7.00 ± 2.000 0.0001* B 52.00 ± 2.000 AB 10.00 ± 2.000 0.0001*
1000 A 53.00 ± 3.000 A 9.00 ± 4.000 0.0001* A 69.00 ± 1.000 A 13.00 ± 3.000 0.0001*
b LSD value 11.16 7.98 - 12.06 6.9 -
IC 50 870.2 µg/ml 6408.7 µg/ml - 487.8 µg/ml 4881.7 µg/ml -

*, significant at (P<0.05)

Table 6. A 24-hour Growth Inhibition Comparison of Ciprofloxacin, Metformin, Cisplatin, and a Mix.
Concentration (µg/ml) Growth inhibition (mean ± SD a) b LSD value

Ciprofloxacin metformin mix Cisplatin
0.1 C 0.00 ± 0.000 a C 0.00 ± 0.000 a C 4.00 ± 2.000 a D 1.00 ± 1.000 a N. S
1 C 0.00 ± 0.000 b C 1.00 ± 1.000 b C 11.00 ± 3.000 a CD 3.00 ± 2.000 b 7.04
10 C 4.00 ± 2.000 b BC 5.00 ± 2.000 b B 27.00 ± 4.000 a C 8.00 ± 1.000 b 9.42
100 B 21.00 ± 1.000 b B 17.00 ± 4.000 b B 38.00 ± 3.000 a B 25.00 ± 3.000 b 11.14
1000 A 34.00 ± 4.000 b A 29.00 ± 7.000 b A 53.00 ± 3.000 a A 36.00 ± 3.000 ab 17.16
b LSD value 7.46 13.62 11.16 7.98
IC 50 1486.9 µg/ml 1793.2 µg/ml 870.2 µg/ml 1420.4 µg/ml

significant at (P<0.05)

Figure 5. Comparison of the 72-hour Growth Inhibition of Ciprofloxacin-metformin Combination between HeLa and 
HFF Cell Lines.
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VAL A:399 a.a. residues at 5.11 Å, 5.22 Å, and 5.16 Å of 
distance, respectively (Figure 12) (Table 11).

The binding site outcomes for both ciprofloxacin and 
metformin were diverse, indicating that the mixture has 
a higher docking score than its components due to its 
complementary targeting ability. These results clarify the 
mixture’s synergistic cytotoxic effect (Figure 13).

Discussion

This study examines the synergistic anticancer effects 
of the ciprofloxacin-metformin combination on cervical 
cancer cell survival and investigates its capacity to 
target cytoplasmic sarcoma tyrosine kinase. The study 
results revealed that combining ciprofloxacin and 
metformin inhibits the growth of cervical cancer cells in 
a manner that depends on both concentration and time, 
demonstrating effects that are both cell cycle-specific 
and cell cycle-nonspecific. Additionally, the combination 
index findings showed that the mixture displayed 
synergistic activity at all concentrations and incubation 
periods. The finding of the dosage reduction index 
indicated a favourable lowering in the effective cytotoxic 
concentration of the mixture medications, signifying an 
increase in the safety of the combination and a reduction 
in the occurrence of side effects. 

The docking study results demonstrated the ability of 
each mixture component to interact with c-Src tyrosine 
kinase to differing degrees and locations, providing 
insights into the combination’s anticancer mechanism. 
However, based on the cytotoxicity results on the HFF 
normal cell line, we proposed a mixture that selectively 

targets cancer cells, given that both cancerous and healthy 
cells express c-Src tyrosine kinase. Nonetheless, the 
cytotoxicity of the mix was predominantly observed in 
cancer cells relative to normal cells.

Our study’s findings of ciprofloxacin cytotoxicity 
align with previous research; one investigation indicated 
that ciprofloxacin markedly suppresses the proliferation 
of transitional cell carcinoma cells [10]. Another 
study suggests that Fluoroquinolone antibiotics induce 
cell death in breast cancer cells, contingent upon the 
treatment dose and duration. Cell death can transpire 
through multiple mechanisms, such as the initiation of 
apoptosis, heightened expression of p53, Bax, and Bcl-2 
proteins, modifications in cell cycle distribution, DNA 
fragmentation, impairment of mitochondrial function 
via the Bax/Bcl-2 pathway, S-phase cell cycle arrest, and 
suppression of topoisomerase II. Furthermore, research 
indicates that oligonucleosomal DNA fragmentation 
correlates with elevated p53 expression [11, 12].
Ciprofloxacin may impede the growth of hepatocellular 
cancer cell lines by generating DNA breaks and blocking 
topoisomerases. When administered in conjunction with 
cisplatin, it has a synergistic impact [13].

Conversely, Metformin, a medication often 
recommended for diabetes, has been shown to effectively 
reduce the occurrence of several malignancies, including 
pancreatic cancer [15, 16]. Recent research has shown 
that metformin significantly decreases the risk of colon 
cancer development and the related death rate [17, 18]. 
Metformin has shown effectiveness in reducing the 
development of adenomas and polyps in individuals 
undergoing polypectomy [19]. It reduces the mortality 

Figure 6. A 24-hour Growth Inhibition Comparison of 
Ciprofloxacin, Metformin, Cisplatin, and a Mix.

Table 7. A 72-hour Growth Inhibition Comparison of Ciprofloxacin, Metformin, Cisplatin, and a Mix.

Concentration (µg/ml) Growth inhibition (mean ± SD a) b LSD value
Ciprofloxacin metformin mix cisplatin

0.1 C 1.00 ± 1.000 b D 2.00 ± 2.000 b C 15.00 ± 5.000 a D 4.00 ± 2.000 b 10.98
1 C 6.00 ± 2.000 b C 14.00 ± 1.000 ab C 17.00 ± 4.000 a D 11.00 ± 1.000 ab 8.84
10 B 24.00 ± 3.000 b C 20.00 ± 3.000 b B 43.00 ± 3.000 a C 23.00 ± 3.000 b 11.3
100 A 37.00 ± 4.000 bc B 30.33 ± 3.055 c B 52.00 ± 2.000 a B 44.00 ± 4.000 ab 12.68
1000 A 43.00 ± 3.000 b A 44.00 ± 2.000 b A 69.00 ± 1.000 a A 67.00 ± 1.000 a 7.3
b LSD value 10.16 8.5 12.06 9.06 -
IC 50 1174.2 µg/ml 1158 µg/ml 487.8 µg/ml 622.1 µg/ml -

significant at (P<0.05)

Figure 7. A 72-hour Growth Inhibition Comparison of 
Ciprofloxacin, Metformin, Cisplatin, and a Mix.
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Table 8. Combination Index and Dose Reduction Index Value for the Cytotoxicity of Ciprofloxacin-metformin Mixture 
at a 24-hour Incubation Period 

Concentration μg/ml Con. ratio CI value Combination behaviour DRI value
Metformin Ciprofloxacin 1:01 Ciprofloxacin Metformin
0.05 μg/ml 0.05 μg/ml 0.00591 Very Strong Synergism 439.545 274.794
0.5 μg/ml 0.5 μg/ml 0.01257 Very Strong Synergism 175.698 145.321
5 μg/ml 5 μg/ml 0.02692 Very Strong Synergism 71.024 77.8946
50 μg/ml 50 μg/ml 0.1332 Strong Synergism 13.5187 16.885
500 μg/ml 500 μg/ml 0.57288 Synergism 2.94011 4.29627

risk in people with diabetes diagnosed with colon cancer.
[20, 72]. Metformin has been shown in another study to 
reduce the chance of acquiring prostate and liver cancer, 
as well as the related death rates for these cancers [20-24].  

In line with our study concept, numerous studies have 
been conducted, with one showing that the amalgamation 
of amygdalin and esomeprazole successfully eliminates 
cervical cancer cells. The efficacy of this combination 
was contingent upon the medication concentration and the 
incubation length [55, 56]. The evaluation demonstrated 
that the combination of ciprofloxacin and laetrile 

effectively inhibits the proliferation of esophageal cancer 
cells [57]. Furthermore, A distinct investigation revealed 
that the combination of metformin and omeprazole exerts 
an inhibitory effect on the proliferation of the HeLa cancer 
cell line in both a concentration- and time-dependent 
manner, via a mechanism that involves the inhibition of 
heat shock protein 60 (Hsp60) [73].

Multiple proposed mechanisms have been studied to 
explore metformin’s anticancer properties. The activation 
of AMPK by metformin in rat hepatoma H4IIE cells results 
in reduced phosphorylation of pS6 [25]. A particular in 
vitro study discovered that metformin directly inhibited 
AMP deaminase, resulting in elevated AMP levels and 
the following activation of AMPK [26]. Recent studies 
indicate that agents inhibiting mitochondrial complex I 
activity within the respiratory system could raise AMP 
levels and trigger AMPK activation. This, in turn, inhibits 
mTOR and activates signaling pathways that promote 
cellular functions and survival [27, 28]. Furthermore, 
Metformin may remove active K-ras from the cellular 
membrane via a PKC-dependent method. No empirical 
evidence exists to suggest a direct interaction between 
metformin and K-ras. Research indicates that metformin 
interacts with and disassembles the PP2A complex inside 
neuronal cells. Furthermore, there is potential to impede 
the function of PP2A-dependent phosphatase [29]. 

We performed a molecular docking study to elucidate 
the novel mechanisms by which the ciprofloxacin 
metformin combination targets c-Src tyrosine kinase. We 
focused on this molecular target due to its association with 
cervical cancer; enhanced phospho-Src expression has 
been seen in cervical cell lines and clinical cervical cancer 
tissues, whereas downregulation of phospho-Src results 
in inhibited cell proliferation [74-76]. Another study 
discovered that cervical squamous cell carcinoma patients 
exhibiting phospho-Src expression had a higher likelihood 
of recurrence. This indicates that phospho-Src may serve 

Figure 8. Log Combination Index Plot (left) and Log 
Dose Reduction Index Plot (right) for the Mixture at 24 
hrs. cip; ciprofloxacin, met; metformin.

Figure 9. Log Combination Index Plot (left) and Log 
Dose Reduction Index Plot (right) for the Mixture at 72 
hrs. cip; ciprofloxacin, met; metformin.

Table 9. Combination Index and Dose Reduction Index Value for the Cytotoxicity of Ciprofloxacin–metformin 
Mixture at 72 hrs. Incubation Period 

Concentration μg/ml Con. ratio CI value Combination behaviour DRI value
Metformin Ciprofloxacin 1:01 Ciprofloxacin Metformin
0.05 μg/ml 0.05 μg/ml 0.01055 Very Strong Synergism 262.495 148.447
0.5 μg/ml 0.5 μg/ml 0.07236 Very Strong Synergism 36.0144 22.4234
5 μg/ml 5 μg/ml 0.0295 Very Strong Synergism 57.3551 82.871
50 μg/ml 50 μg/ml 0.12517 Strong Synergism 12.3664 22.5712
500 μg/ml 500 μg/ml 0.23566 Strong Synergism 5.70376 16.5729
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Table 10. The Selective Toxicity Index of Ciprofloxacin-
metformin Mixture and Cisplatin Across two Incubation 
Periods

Incubation SI
MIX Cisplatin

24 hrs. 7.36 0.72
72 hrs. 10 0.74

(An SI greater than 1.0 signifies a drug's enhanced efficacy against 
tumor cells compared to its toxicity towards normal cells.

Table 11. Comparison of Docking Scores among 
Ciprofloxacin, Metformin, and Bosutinib 

Medications Docking score 
Ciprofloxacin -7.9

Metformin -5.1
Bosutinib -8.1

as a predictor for the development and recurrence of 
cervical squamous cell carcinoma [77].

The non-receptor protein tyrosine kinase Cancer Src 
is involved in several signaling pathways [30]. Numerous 
protein-tyrosine kinase receptors in the plasma membrane 
interact with Src. These interactions affect Src’s activity, 
which also influences the receptors. EGFR (ErbB1) and 
ErbB2 are two significant protein-tyrosine kinase receptors 
involved with Src. Overexpression of ErbB2 is connected 
to breast cancer, whereas mutations in EGFR are typical 
in non-small cell lung cancer. Besides glioblastoma, the 
ErbB family is associated with cancers of the colorectal, 
gastric, head and neck, and pancreatic regions [31, 32]. 
The hepatocyte growth factor receptor (HGFR), also 
known as the c-MET protein-tyrosine kinase receptor, 
is another tyrosine kinase receptor that is regulated by 
src tyrosine kinase. C-MET is involved in embryonic 
development, wound healing, cellular migration, and 
angiogenesis [33, 34]. Epithelial cells produce c-Met, 
while mesenchymal cells generate HGF. Various 
malignancies, such as bladder, brain, breast, kidney, liver, 
pancreatic, prostate, stomach, and non-small cell lung 
cancer, exhibit c-Met dysregulation. Many tumors in 
humans demonstrate abnormal system activation through 
mechanisms like protein overexpression, mutations, 
gene amplification, and receptor-ligand upregulation. 

C-MET mutations have been detected in the tyrosine 
kinase domain [21], juxtamembrane domain [5], and 
extracellular domain [16] of numerous solid tumors, 
which include both hereditary and sporadic human 
papillary renal carcinomas, lung cancer, ovarian cancer, 
childhood hepatocellular carcinomas, head and neck 
squamous cell carcinoma, and gastric cancer [33, 40-42]. 
Elevated levels of c-Met enhance invasion, migration, 
and metastasis [9, 43, 44, 78] Src tyrosine kinase plays a 
role in regulating the activity of platelet-derived growth 
factor (PDGF), which affects cellular proliferation, 
migration, survival, and angiogenesis. PDGF binds to its 
receptor protein-tyrosine kinases (PDGFRα/β). Cancers 
such as breast, colorectal, prostate, GIST, glioblastoma, 
osteosarcoma, NSCLC, and neuroblastoma display 
PDGFR activity. Point mutations in the PDGFRα gene 
are found in 5% of human gastrointestinal stromal tumors 
(GISTs). Additionally, 5–10% of glioblastomas show 
expression of this gene. PDGFRα amplification has 
also been detected in oligodendrogliomas, esophageal 
squamous cell carcinoma, and artery intimal sarcomas, 
with PDGFRα/β activation facilitating cellular invasion 
and metastasis. Moreover, insulin-like growth factors 
(IGF-1 and IGF-2) support cellular division, growth, 
survival, angiogenesis, wound healing, and embryonic 
development [45, 46].  

Our study indicates that the combination index value 
illustrates a synergistic interaction between ciprofloxacin 
and metformin. Additionally, our molecular docking 
analysis shows that ciprofloxacin and metformin work 

Figure 10. 2D and 3D Structures of the Human c-Src 
Tyrosine Kinase Binding Site with Ciprofloxacin.

Figure 11. 2D and 3D Structures of the Human c-Src 
Tyrosine Kinase Binding Site with Metformin.

Figure 12. 2D and 3D Structures of the Human c-Src 
Tyrosine Kinase Binding Site with Bosutinib.
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together by targeting c-src tyrosine kinase at distinct 
binding sites. 

Based on the dose reduction index, combination 
medications exhibit fewer side effects due to their 
effective cytotoxic concentration being lower than that 
of separate components. The combination selectivity 
index demonstrated superior cytotoxicity against cancer 
cells compared to cisplatin, suggesting its potential as a 
cervical cancer treatment.

The limitations of this study primarily revolve 
around the restricted range of medication concentrations 
utilized. This choice was made to identify the optimal 
effective cytotoxic concentration of the ciprofloxacin 
and metformin combination. Additionally, the lack of in 
vivo validation represents a significant limitation, which 
we acknowledge and propose as a critical area for future 
research (Figure 14).

In conclusion, our study results indicate that using 
ciprofloxacin along with metformin effectively inhibits 
the growth of cervical cancer cells. This inhibition occurs 
through both cell cycle-specific and cell cycle-nonspecific 
mechanisms. The findings demonstrate that these two 
medications together produce synergistic cytotoxicity, as 
measured by the combination index value.

Computational docking simulations demonstrated 
that ciprofloxacin and metformin interact with c-Src 
tyrosine kinase. The findings elucidate the synergistic 

interactions among the combination ingredients, as each 
drug targets a distinct binding site on c-Src tyrosine 
kinase, suggesting a complementary mechanism for 
anticancer activity. Furthermore, the selective toxicity of 
the ciprofloxacin metformin mixture was greater than that 
of cisplatin. The dose reduction index study showed that 
the combined concentration of medications required to 
elicit significant cytotoxic effects is less than that needed 
for each medication when administered separately. This 
finding suggests that the combination possesses enhanced 
potency compared to the individual drugs, making it a 
potentially appealing and safer therapeutic option for 
the treatment of cervical cancer. Despite the well-known 
pharmacokinetics, drug interactions, and safety profile, 
Future studies should investigate these factors to optimize 
dosing regimens and ensure safety, thereby facilitating the 
translation of preclinical findings to clinical applications 
in cervical cancer therapy.
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Figure 13. 3D Structure of Binding Sites of Human 
c-Src Tyrosine Kinase for Ciprofloxacin (yellow) and 
Metformin (blue).

Figure 14. Hela Cancer Cells' histopathological Features. 
(A) Ciprofloxacin-treated Cancer Cells at 72 hours. (B) 
metformin-treated Cancer cells at 72 hours. (C) Cipro-
floxacin-metformin mix treated Cancer cells at 72 hours. 
(D) cisplatin-treated Cancer cells at 72 hours. (E) control 
group.
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System. SD: standard deviation. LSD: Least Significant 
Difference. DRI: dose reduction index. CI: combination 
index. Hsp 90: heat shock protein 90. HFF cell line: human 
fibroblast cell line. PPIs: proton pump inhibitors. c-src 
tyrosine kinase: cytoplasmic sarcoma tyrosine kinase. 
SI: selectivity index 
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