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1. Introduction

The disease is also the second leading cause of death 
worldwide, resulting from aberrant cell development 
and metastatic growth [1]. The cells of cancer frequently 
multiply independently of development signals and do not 
respond to survival/death signals, resulting in apoptosis. 
This phenomenon is caused by inherited factors, such as 
DNA mutations or epigenetic modifications. Some cancer 
genes, like BRCA1/2, are inherited that possess a strong 
depth because of their involvement in cellular control. 
[2]. Analysing unregulated gene transcription systems in 
cancer cells could aid in early diagnosis and treatment. 
Identifying certain genes (gene signatures) can lead to 
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an accurate diagnosis as well as more targeted therapy 
choices. Microarray analysis and RNA-seq devices allowed 
researchers to develop and evaluate novel mathematical 
and statistical models to evaluate genetic expression data, 
Calculating transcript concentrations across thousands of 
domains over a wide range of human patient samples [3]. 
Express technology has transformed the study of gene 
expression by allowing simultaneous assessments of gene 
alterations under a variety of experimental circumstances. 
This has allowed for the identification of disease genes, 
therapeutic targets, and tumour subtypes [4, 5]. Some 
significant genes are connected with particular cancer 
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subtype classifications that can be submitted to the 
FDA for validation and diagnosis [6]. Furthermore, 
the affected gene space frequently comprises noisy and 
redundant genes, which might have a negative impact 
on classification performance. As an illustration, the 
k-nearest-neighbour technique was prone to useless 
categorization properties [7].

Data mining techniques are typically classified into 
three categories: unsupervised learning, supervised 
learning, and reinforcement learning. Supervised learning 
uses a labelled training collection for mapping the input 
information into the proper output [8]. Unsupervised 
learning, in contrast, is not dependent on designated data; 
instead, the approach discovers information and pattern 
architectures. Such as clustering, on its own. In this 
context, the model’s role is to detect patterns or group the 
input data into meaningful classes. Supervised learning 
typically involves a classification task, where the goal is 
to assign data to predefined categories. In unsupervised 
learning, clustering is a typical method used to explore 
the underlying data distribution, often serving as 
a pre-processing step for feature selection [9].

Since gene expression data has increased dramatically, 
various methods for analysing and diagnosing disease 
utilizing ML techniques have been developed. Using 
gene expression data analysis, these approaches classify 
samples according to their anticipated survival status. 
Methods based on ML are currently developed for 
analysing expression profiles. However, the elevated 
dimensionality in data from microarray gathering, 
along with limited sample sizes, restricts statistical 
power for clinical applications [10]. this frequently 
results in overfitting of pattern profiles, resulting in poor 
generalization capability [11]. Traditional ML algorithms, 
such as Cox’s proportional hazard model along with 
encouragement vector machines, are frequently used for 
forecasting and recognizing cancer [12]. Deep learning 
(DL) models and algorithms are currently receiving a lot 
of interest from scientists and researchers throughout the 
world. DL, a subset on ML, takes advantage of advances 
in neural network technology. It functions by incorporating 
multiple hidden layers, activation functions, and hyper 
parameter tuning to process inputs and generate outputs. 
This structure makes DL models more sophisticated and 
advanced, offering substantial advantages in classification 
tasks. They are very good at handling complex and huge 
datasets, outperforming typical predictive models. For the 
past few years, DL has contributed to significant advances 
in healthcare, particularly in health imaging and cancer 
diagnosis.

This paper primarily examines the latest advancements 
in ML and DL techniques in classification of cancer. The 
increasing availability of healthcare data, along with the 
advancement of data analysis tools, has significantly 
improved the use of ML and DL in the healthcare 
sector [13]. Both ML and DL have made remarkable 
progress in addressing various scientific challenges [14]. 
In medical care, the use of AI serves a major part in 
several applications, including data management. Drug 
development, disease forecasting, and treatment planning 

[15].
• This research examines mechanical learning as well 

as deep neural network models towards cancer subtype 
categorization, including their techniques, strengths, and 
limitations in processing gene expression data.

• It highlights the role of multi-omics data integration, 
including RNA-Seq and ATAC-Seq, to enhance diagnostic 
accuracy and subtype classification, while discussing how 
these approaches address challenges related to tumor 
heterogeneity and complex data patterns.

• The review outlines critical limitations such as 
computational demands, generalizability issues, and data 
inconsistencies, offering targeted recommendations for 
future research, including standardized data protocols, 
optimized algorithms, and resource-efficient deployment.

• This paper proposes strategies to improve model 
interpretability and scalability for clinical settings, 
emphasizing the potential of AI techniques to bridge 
gaps in clinical usability and patient-centred diagnostic 
outcomes

2. Background of the Study
The research on cancer subtype classification 

highlights the revolutionary impact. Of AI and ML in 
cancer diagnostics, especially through the analysis of 
gene expression data shown in Figure 1 [16]. Traditional 
ML models, like support vector machines (SVMs) and 
decision trees, initially offered moderate success. DL 
models like CNN and RNN have advanced the field 
by capturing intricate patterns within complex gene 
expression datasets. XAI has made AI-driven predictions 
more interpretable for clinicians, addressing transparency 
in medical decision-making. However, challenges remain, 
such as data heterogeneity, high computational costs, and 
model generalizability. Recent research has turned to 
strategies like transfer learning, multi-omics integration, 
and enhanced data pre-processing techniques for more 
robust, scalable, and clinically applicable AI models.

Nethala et al. [17] proposed the Optimal Gene 
Therapy Network (OGT-Net), an advanced AI-driven 
framework for classifying various types of cancers using 
gene expression data. The method integrates dataset 
normalization, feature extraction through Light Gradient 
Boosting Model (LGBM), and optimal feature selection 
using Interrupt-based Harris Hawk Optimization (IHHO) 

Figure 1. Cancer Classification Model Using Gene 
Expression Data
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Al-Azani et al. [20] addressed two key challenges 
in gene expression–based cancer classification: class 
imbalance and the curse of dimensionality. The study 
applied oversampling techniques, including SMOTE and 
its variants, to balance the datasets at the data level, while 
ensemble learning was adopted at the algorithmic level 
to improve robustness. To reduce dimensionality, chi-
square and information gain methods were first applied 
independently, and then combined into a novel hybrid 
feature selection approach (CHiS–IG) to identify the 
most informative genes. Among the evaluated models, the 
integration of SVM-SMOTE with a random forest (RF) 
classifier achieved the best performance, reaching 100% 
accuracy in some datasets, surpassing results reported in 
prior literature. The findings highlight the effectiveness 
of combining oversampling and hybrid feature selection 
in mitigating the limitations of high-dimensional, 
imbalanced gene expression data. 

Khalsan et al [21], created a new fuzzy gene selection 
technique (FGS) enhance tumor categorization using 
expression of genes data. The approach uses three methods 
for selecting features (Mutual Information, F-ClassIf, and 
Chi-squared) to identify relevant genes while reducing 
the dimensionality of the data. The blurring and the 
defuzzification methods were used to identify the highest 
overall rating for each gene, which assisted in identifying 
essential genes. The FGS-enhanced cancer classification 
model outperformed the classic MLP method with regard 
to of accuracy, precision, recall, and the f1-score. (96.5%, 
96.2%, 96%, and 95.9%, respectively). The suggested 
model exhibited its ability to accurately classify cancer in 
six datasets, indicating its promise in a variety of domains, 
including biomedical science. However, the FGS model’s 
high computational demands may limit its scalability and 
efficiency with large gene expression datasets. The fuzzy 
gene selection strategy reduces the curse of dimensionality 
by filtering irrelevant genes, thereby improving robustness 
in handling high-dimensional expression data.

Joshi et al [22], researched introduces rPAC, a new 
pathway analysis paradigm that divides signalling 
pathways are divided under two parts: The precursor 
component of a transcriptional element blocking includes 
downstream section piece that makes up a TF block. The 
grading method is then used on a collection on expressed 
genetic material data sets, resulting in the following 
summary metrics: “Proportion of Significance” (PS) and 
“Average Route Score” (ARS). The method’s performance 
was evaluated using both simulated data and an actual 
investigation comprising three epithelial tumor datasets 
using the Cancer Genome Atlas (TCGA). The rPAC 
approach highlighted various pathways as potential 
forms of cancer endorsements, and it was discovered 
to be more effective than standard methods in detecting 
illness etiology, especially when distinguishing pathways 
and sections of damaged circuits at a greater resolution.. 
However, the rPAC method’s complexity may hinder its 
scalability and adaptability to diverse gene expression 
datasets and pathway structures. By decomposing 
signaling pathways into modular components, rPAC 
captures hierarchical biological relationships, improving 

to remove redundant gene sequences. Subsequently, a 
customized DL convolutional neural network (DLCNN) is 
employed to categorize cancers including lymphography, 
colon, lung, ovarian, and prostate types. Simulation 
results demonstrate that OGT-Net outperforms state-
of-the-art approaches, achieving an average accuracy 
of 91.13%, precision of 90.84%, recall of 91.25%, and 
F1-score of 90.7%, reflecting significant improvements 
over existing methods. The framework emphasizes both 
performance enhancement and clinical applicability, 
highlighting the potential for integration into user-friendly 
interfaces for healthcare practitioners. While OGT-Net 
shows promise in robust cancer classification, future 
research could focus on optimizing model architecture, 
improving interpretability, and bridging the gap between 
computational advancements and practical clinical 
deployment.

Abidalkareem et al. [18] developed a ML-based 
framework for identifying stage-specific biomarkers in 
breast cancer using dysregulated microRNAs (miRNAs). 
Leveraging a dataset of 1097 metastatic tissue samples 
from TCGA, the study applied Neighborhood Component 
Analysis (NCA) and Minimum Redundancy Maximum 
Relevance (MRMR) for feature selection to isolate the 
most discriminant up- and down-regulated miRNAs 
across the four stages of breast cancer. Both methods 
significantly outperformed the conventional fold-
change (FC) approach, with NCA achieving the highest 
classification accuracy of 98.3% and MRMR reaching 
93.1%.  While NCA proved effective in identifying stage-
specific biomarkers, MRMR provided complementary 
information by highlighting common biomarkers relevant 
across multiple stages. The study underscores the potential 
of advanced feature selection in improving diagnostic 
precision and facilitating early detection, though a key 
limitation remains the inability to incorporate blood 
samples, which share similar miRNA profiles in normal 
and cancerous tissues. 

Babichev et al. [19] investigated the application of 
DL architectures for cancer classification using gene 
expression data, comparing CNNs, LSTMs, GRUs, and 
hybrid models. To optimize performance, the authors 
employed Bayesian optimization with 5-fold cross-
validation for hyperparameter tuning and introduced a 
hybrid quality criterion, integrating an F1-score through 
the Harrington desirability method. Their framework 
follows a hierarchical step-by-step processing approach, 
where predictions from individual DL models are refined 
through a CART-based classifier to enhance decision-
making objectivity. Experimental evaluation on datasets 
covering eight cancer types and a normal sample subset 
revealed that a two-layer GRU-RNN achieved the 
highest performance, with an accuracy of 97.8%. The 
study highlights the robustness of GRU-based recurrent 
networks for gene expression classification, while 
also emphasizing that increasing model complexity 
through ensembles may not guarantee superior accuracy. 
Nevertheless, the incorporation of hybrid decision-
making mechanisms offers improved interpretability and 
reliability. 
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interpretability of gene expression patterns across different 
cancer subtypes.

Nahiduzzaman et al [23] described a new method for 
reliably classifying three forms of lung cancer, as well 
as normal lung tissue, using CT images. The method 
makes use of a compact parallel depth-wise separable 
CNN (LPDCNN) with the ridge regress radical training 
device. The method improves image quality and 
decreases noise by employing contrast-limited adaptive 
histogram equalization (CLAHE) and Gaussian blur. 
The LPDCNN retrieves discriminant characteristics with 
little computational cost. This Ridge-ELM approach 
was developed for better the accuracy of classification. 
The structure achieves average recall and accuracy values 
of 98.25 ± 1.031% and 98.40 ± 0.822% in four-class 
categorization, respectively. It is also extremely efficient, 
with testing times of only 0.003 seconds. The system 
also includes SHAP (Shapley Additive Explanations) 
to improve explain ability and decision-making in real-
world lung cancer. However, the method’s dependence 
on specific pre-processing techniques may restrict its 
generalizability to diverse imaging conditions and 
lung cancer subtypes. The use of depth-wise separable 
convolutions significantly reduces computational cost 
while preserving discriminative features, making it 
more efficient for large-scale imaging and gene-linked 
diagnostic tasks.

The article examines recent developments in ML 
algorithms for categorized cancer and subtype detection, 
focusing on DL frameworks like adversarial networks 
and convolutional architectures. These methods enhance 
the detection of tumor origins, molecular subtypes, and 
gene interaction groups. However, challenges remain in 
scalability, computational efficiency, and adaptability 
across diverse datasets and cancer types. Addressing 
these limitations is essential because moving the models 
beyond studies towards clinical use, thereby improving 
cancer diagnosis and treatment planning across a variety 
of biological and imaging contexts.

3. Review Analysis
The review paper on tumor category classifying 

utilizing genetic expression data provides a complete 
methodology. That combines ML, explainable AI 
classifiers, neural network architectures, and transfer 
learning to improve diagnostic accuracy and clinical 
relevance. ML techniques effectively analyze complex 
gene expression profiles to identify distinct cancer 
subtypes, while explainable AI enhances interpretability, 
allowing for insights into the biological significance 
of predictive markers. Neural network architectures, 
particularly DL models, capture intricate biological 
interactions and facilitate the identification of subtype-
specific biomarkers the technique of transfer learning uses 
models that have been trained to improve classification 
performance, particularly in settings with little data. 
Moving into the future, subsequent research must 
concentrate on integrating multi-omics data to further 
refine classification accuracy, enhancing model robustness 
against diverse datasets, and developing real-time 

applications for clinical decision-making, ultimately 
advancing personalized cancer treatment strategies. 

From the comparative review, three cross-cutting gaps 
emerge: (i) data-related challenges, such as heterogeneity, 
small sample sizes, and lack of standardized protocols; 
(ii) model-related challenges, including overfitting, 
computational inefficiency, and poor scalability; and (iii) 
clinical translation gaps, such as limited interpretability, 
lack of cross-institutional validation, and barriers to 
clinical adoption. Addressing these gaps requires a 
unified approach that combines predictive accuracy, 
interpretability, and adaptability.

3.1 ML based on approaches 
A ML approach for classifying Tumor types depend 

on information on gene expression begins with pre-
processing steps such as normalization and gene filtering 
to reduce noise as shown in Figure 2 [24]. Feature 
selection methods like t-tests or Recursive Feature 
Elimination (RFE) help identify the most relevant genes, 
while dimensionality reduction techniques like PCA or 
auto encoders reduce the feature space while retaining 
critical information. Classification is then performed 
using a variety of models, such as SVM, RF, and DL 
structures. The efficacy of the model is measured utilizing 
metrics such as precision as well as ROC-AUC, with 
cross-validation to ensure robustness and generalizability. 

Rukhsar et al [25], provided a novel strategy for 
dealing with Multidimensional and loud. RNA-Seq 
data from the Mendeley repository, with the goal of 
retrieving information on five forms of cancer. Eight 
DL algorithms are used to pre-process the data, extract 
features, and classify the results. CNN outperformed all 
other algorithms, and the study classified five tumours 
using related genes. Comparative research revealed 
that the proposed technique outperformed the existing 
literature. However, High computational demands and 
risk of overfitting may limit the approach’s scalability 
and generalizability for RNA-Seq data.

Sun et al [26], proposed SCM-DNN, to find specific 
the simultaneous expression circuits for each molecular 
category, enabling for better and more precise predictions 
for breast while stomach cancer patients. SCM-DNN 
beats standard gene expression-based approaches 
across all criteria, even with imbalanced sample sizes. 
The discovered genes may represent particular subtype 
features and help to improve knowledge about molecular 
subtyping processes, potentially driving personalized 
therapy. The incorporation of multi-omics data is 

Figure 2. Types of Classification in ML
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recognized being a useful technique for studying biological 
systems. Despite, A potential limitation of SCM-DNN is 
its reliance on high-quality, large-scale multi-omics data, 
which not always be available, potentially affecting model 
accuracy and generalizability.

Park et al [27], RNA-seq transcriptome and ATAC-
seq epigenetic data integrated to create a system of 
classification for cancer of the breast fundamental 
categories. It identifies eleven important genes involved 
in immunological comments, hormone signalling, 
progression of cancer, and cell division. The study 
employs bulkRNA-seq and ATAC-seq data to investigate 
the connection between the expression of genes and access 
to chromatin in cancer of the breast patients. The research 
shows that integrating RNA-seq and ATAC-seq data with 
ML algorithms may improve the comprehension of the 
accessibility of chromatin and the molecular mechanisms 
that drive these subtypes. However, a limitation of the 
study is the potential bias in the ML model due to the 
reliance on bulk RNA-seq and ATAC-seq data, which 
not capture the heterogeneity of tumour cell populations.

Babichev et al. [28] proposed a hybrid ML framework 
to evaluate proximity metrics for high-dimensional gene 
expression data, focusing on their role in clustering and 
disease classification. By integrating data mining methods 
with ML techniques such as k-medoid clustering, RF , 
Bayesian optimization, and a stacking meta-classifier, the 
model achieved high accuracy (>95.9%) across 13 TCGA 
cancer types and demonstrated strong generalizability 
on Alzheimer’s and Type 2 Diabetes datasets. A key 
contribution was the comparative analysis of correlation 
distance, mutual information, and Wasserstein metrics, 
with correlation and Wasserstein proving highly effective 
and interchangeable for clustering and classification. 
The stacking model further enhanced robustness against 
clustering errors, enabling a scalable and automated 
pipeline suitable for precision medicine. This work 
highlights how metric-driven hybrid modeling can support 
reliable biomarker discovery and early disease diagnostics 
from gene expression profiles.

Alanazi et al. [29] proposed an integrative ML 
framework for classifying cancer subtypes using RNA-seq 
data from BRCA, KIRC, COAD, LUAD, and PRAD. 
The approach combined data normalization, feature 
selection, dimensionality reduction, clustering (k-means), 
and classification, ultimately employing a Wide Neural 
Network that achieved remarkably high accuracy 
(99.995% on the test set). The method was proposed to 
address the limitations of traditional histopathology by 
leveraging transcriptomic signatures for more precise and 
personalized cancer subtype stratification. The key benefit 
lies in its ability to unravel molecular heterogeneity and 
improve diagnostic accuracy, paving the way for precision 
oncology and tailored therapies. However, the authors note 
that the reliance on large, high-quality RNA-seq datasets 
poses a limitation, as data biases or noise could reduce 
robustness and affect the reliability of clinical applications.

Babichev et al [30], introduced a hybrid inductive 
approach to creating uniquely expressed and socially 
connected expression patterns using the technique of 

spectral clustering. The model proved to be insufficient 
for internal as well as external quality standards, leading 
the creation of a balancing clustering quality criterion. The 
best cluster structures were discovered to be four and six 
cluster configurations. The algorithm’s appropriateness 
has been evaluated using a classifier on gene expression 
datasets. The method of RF as the CNN were utilized to 
handle binary classification and multiclass identification 
issues. However, the model’s reliance on specific clustering 
configurations may limit flexibility in identifying gene 
expression patterns across diverse datasets.

Liu et al [31], proposed ML-based method has been 
developed to generate a consensus immune-related 
lncRNA signature (IRLS), this constitutes an individual 
contributor to risk for survival in general. IRLS provides 
consistent results but has a modest value in predicting 
for relapse-free survival. It can be more accurate with 
conventional diagnostic and molecular features. The group 
with a higher risk is more susceptible to fluorouracil-
based chemotherapy, whereas the group with a low risk 
benefits better from bevacizumab. IRLS may improve 
medical results among particular patients suffering from 
CRC. However, the low estimated value for relapse-free 
mortality may limit the signature’s overall utility in clinical 
decision-making.

Mohamed et al [32], researched developed a 
hybrid approach to cancer of the breast. Identification 
and diagnosis that integrates the Ebola optimization 
search algorithm (EOSA) Using a CNN design that 
utilizes expression of genes data. The data was pre-
processed using a variety of approaches, including outlier 
removal, normalization, filtering, and conversion to 
two-dimensional pictures. The previously EOSA-CNN 
technique was used in categorization. The predictive 
model performed better than the malignant category 
with respect to of accuracy, precision, recall, f1-score, 
kappa, preciseness, and sensitivity. The findings suggest 
that the model may accurately and consistently diagnose 
breast cancer utilizing genetic expression data. Future 
improvements will address unbalanced data and integrate 
the model with new optimization algorithms. However, 
the model’s performance may be compromised by the 
challenges of handling imbalanced data, which could 
affect classification accuracy.

Sarkar et al [33], proposes a genetic algorithm and 
SVM (GA-SVM) breast cancer classification model that 
employs a combination of ML methodologies. Using 
clinical pathology data from numerous tertiary care 
hospitals, the model differentiates between those suffering 
from a triple-negative and non-triple-negative breast 
disease. Whenever utilized with two independent medical 
facilities datasets from the North West Africa peninsula, 
the model outperformed the other models. A ten-fold 
cross-validation handle was employed to guarantee that 
the framework utilized for prediction accuracy remained 
consistent across all models. The model’s efficacy was 
assessed using measures such as average square mistake, 
logarithm loss, F1 value, ROC curve, and precision-recall 
graph. However, the model’s reliance on specific clinical 
pathological data may limit its generalizability across 
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different populations and cancer types.
Senbagamalar and Logeswari [34] addressed the 

challenge of multiclass cancer classification using gene 
expression data by proposing a genetic clustering algorithm 
(GCA) for optimal feature selection and a divergent RF 
(DF) classifier. Their approach reduced 1621 gene features 
to just 21 highly informative ones, enabling efficient 
classification of five cancer types: breast, colon, kidney, 
lung, and prostate cancer. The proposed GCA-DF model 
achieved 95.21% accuracy, 93% specificity, and 94.29% 
sensitivity, outperforming conventional classifiers. By 
combining clustering-based feature reduction with an 
ensemble classifier, the study highlighted the importance 
of compact yet discriminative gene subsets in improving 
diagnostic accuracy. The authors further suggested 
incorporating metaheuristic optimization strategies in the 
future to refine gene expression selection and enhance 
computational efficiency in large-scale cancer diagnostics 
(Table 1).

Recent advances in cancer research have used 
ML approaches to increase diagnostic and prognosis 
accuracy. Techniques such as RNA-Seq data processing 
and SCM-DNN models have improved cancer subtype 
prediction and noise reduction, but they have computational 
and generalizability limitations. Combining RNA-Seq and 
ATAC-Seq data improves comprehension of chromatin 
accessibility, but it may neglect tumour heterogeneity. 
Models such as AWCA and LGDLDA are highly 
concordant with existing classification standards, but their 
applicability to varied populations remains a challenge. 
The Consensus Immune-Related lncRNA Signature 
(IRLS) has improved colorectal cancer prognosis, while 
approaches such as EOSA and GA-SVM show promise 
in breast cancer diagnosis. The Knowledge- and Context-
Driven ML (KCML) paradigm demonstrates the power of 
ML in large-scale genetic studies.

3.2 Explainable AI Classifier based on approaches
Explainable AI (XAI) classifiers are used to categorize 

Tumor classifications based on expression of genes 
information. As shown in Figure 3 [35]. These classifiers 
increase interpretability and predictive performance, 
allowing researchers and clinicians to better understand the 
decision-making process involved in categorization. XAI 
classifiers use techniques Examples include decision tree 

structures, randomly generated forests, and SVM, among 
others.to highlight essential features and interactions in 
gene expression data, confirming predictions and building 
trust among medical practitioners. This transparency 
helps to uncover biomarkers linked with various subtypes 
and facilitates individualized treatment regimens, which 
ultimately improves patient outcomes. However, obstacles 
like as data quality, dimensionality, and biological system 
complexity persist, demanding additional study for greater 
clinical application.

Wani et al [36], introduced “DeepXplainer,” a hybrid 
DL system that detects lung cancer and explains forecasts. 
It makes use of a CNN and XGBoost to predict class labels. 
The technique uses an understandable computational 
intelligence method known as “SHAP” to provide 
explanations. This algorithm was used to process the 
freely available “Survey Lung Cancer” information and 
exceeded previous methods with respect to of precision, 
responsiveness, and F1 score. The model had 97.43% 
accuracy, 98.71% sensitivity, and an F1-score of 98.08. 
Each forecast is provided using an intelligible AI method 
on both a local and global level. Data diversity across 
different lung cancer subtypes and patient populations 
may provide a challenge.

Li et al [37], proposed a new framework (CGMega) 
has been created to analyze cancer gene modules using 
explainable graph attention. The system uses a multi-
omics representation chart, with vertices representing 
genomes and lines denoting interactions between proteins. 
It detects cancer-related genes using a transformer-based 
graph attention neural network within a semi-supervised 
setting. Further outstanding performance of CGMega 
enables the subsequent detection of cancer gene modules. 
GNNExplainer40 is a model-agnostic method for 
understanding contributing variables to cancer genes in 
a multi-omics setting. CGMega was tested on cancerous 
breast cell lines and AML patients, finding high-order 
linkages among gene in disease genetic networks. 
However, May face limitations in generalizability across 
diverse cancer types and multi-omics datasets.

Abhang and Gunjal [38] proposed a Deep Graph 
Ensemble CNN (G-ECN) for drug response prediction 
using multi-omics cancer cell line data from the GDSC2 
dataset. The model integrates graph-based multi-scale 
feature representation with transfer learning from gene 
ontology knowledge to capture critical gene–drug 
interactions, addressing the challenge of accurately 
distinguishing “sensitive” and “resistant” drug responses. 
This approach was proposed to improve personalized 
cancer therapy by leveraging structural and genomic 
features beyond traditional models. The main benefits 
include higher predictive accuracy, strong generalizability 
across datasets (validated on CCLE), and explainable 
outputs aligned with biological knowledge, making it 
useful for precision oncology. However, the method relies 
heavily on high-quality multi-omics data and remains 
computationally expensive, which may limit scalability 
in clinical settings.

Sekaran et al [39], described OPSCC is an unpredictable 
disease having a poor prognosis. That significant medical Figure 3. Application of XAI in Healthcare
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conditions along with elevated recurrence rates are 
connected to current therapies. Highlight the importance of 
advancing diagnostic techniques in OPSCC. Researching 
biomarkers that are especially those that may be gathered 
without intrusive procedures, has the potential to alter 
patient care methods. The current study used a genomic 
approach to uncover oncogenic factors involved in the 
development of OPSCC. Combining informatics studies 
and ML methodologies with a detailed examination the 
RNAseq information resulted in the discovery of ECT2, 
LAMC2, and DSG2 as potential molecular markers 
for OPSCC. The study’s findings may help improve 
the survival rates of OPSCC patients. The findings and 
technique of this study could be used to clinical and 
experimental settings in future research. However, the 
findings may lack generalizability due to potential biases 
in the RNA-seq datasets used for analysis.

Morabito et al [40], the article presents the DeepSHAP 
Auto encoder Filter for Gene Selection (DSAF-GS), a new 
DL and XAI-based FS approach for genomics-scale data 
analysis. The technique uses AEs to select those that are 
most useful genes while retaining the initial characteristic 
time, boosting the explain ability of results and using AEs’ 
representation capabilities. Gene selection is used to build 

and train diagnostic or prognostic prediction models. The 
Shapely Additive Ex-Planation (SHAP) XAI technique is 
then used to examine the model findings and determine the 
genes that are most related to the condition. A systematic 
population of newly identified Bi net stage A CLL patients 
was studied using the XAI approach to discover markers 
which levels of expression predict the need for medication. 
Despite, May have limited scalability with large, complex 
genomic datasets due to computational demands. 

Yang et al. [41] introduced MHGCN, a Multi-channel 
Hybrid Graph CNN, for cancer drug response prediction 
by explicitly modeling the topological relationships of 
cell line–drug pairs (CDPs). The framework integrates 
gene expression data and drug molecular fingerprints, 
refines CDPs with denoising autoencoders, and builds 
both a similarity network (via cosine similarity) and a 
heterogeneous response graph. MHGCN jointly learns 
from these graphs using graph convolutional layers and 
fuses embeddings through a weighted matrix projection 
to generate predictions. This model was proposed to 
overcome the limitation of prior methods that ignored 
intrinsic CDP connections. The main advantage lies in 
its improved predictive accuracy and ability to capture 
complex biological interactions, making it valuable for 

Table 1. Comparison of Literature Done in ML Based on Approaches
Author/Reference Technique Significance Limitation

Rukhsar et al [25] RNA-Seq data · Reduces noise in RNA-Seq data
· Enabling accurate cancer 
classification.

High computational demands and risk 
of overfitting may limit the approach's 
scalability and generalizability for 
RNA-Seq data.

Sun et al [26] SCM-DNN · Enhances cancer 
subtype prediction
· Supporting personalized therapies.

Potentially affecting model accuracy 
and generalizability.

Park et al [27] RNA-seq transcriptome and 
ATAC-seq epigenetic data

· Enhances understanding of 
chromatin accessibility
· Facilitating improved
 classification of intrinsic subtypes.

Which not capture the heterogeneity of 
tumour cell populations.

Babichev et al. [28] Hybrid ML framework with proximity metrics 
(k-medoid clustering, Random Forest, 
Bayesian optimization)

· Achieved >95.9% accuracy 
across 13 TCGA cancers. 
· Demonstrated strong 
generalizability to Alzheimer’s 
and Type 2 Diabetes. 

Relies heavily on metric selection; 
performance may vary with dataset
 characteristics and metric suitability.

Alanazi et al. [29] Integrative ML pipeline with normalization, 
feature selection, dimensionality reduction, 
clustering (k-means), and Wide Neural Network

· Achieved exceptionally 
high accuracy (99.995%) 
on RNA-seq cancer subtype data. 
· Addressed histopathology l
imitations by leveraging 
transcriptomic signatures. 

Requires large, high-quality RNA-seq 
datasets; data noise or bias can reduce 
robustness and clinical applicability.

Babichev et al [30] Hybrid inductive model · Enhances the identification of
 distinct gene expression profiles
· More accurate classification in
 gene expression analysis.

Limit flexibility in identifying gene 
expression patterns across diverse 
datasets.

Liu et al [31] Consensus IRLS · Enhances prognostic accuracy 
for colorectal cancer
· Improve patient outcomes

Limit the signature's overall utility
 in clinical decision-making.

Mohamed et al [32] EOSA · Improves lung cancer identification 
with genetic activity information.

Model  performance may be 
compromised by the challenges of 
handling imbalanced data

Sarkar et al [33] GA-SVM · GA-SVM model enhances breast 
cancer classification accuracy

Limit its generalizability across 
different populations and cancer types.

Senbagamalar &
Logeswari [34]

GCA + DF · Reduced 1621 genes to 21 
discriminative features.
· Achieved 95.21% accuracy, 93% 
specificity, and 94.29% sensitivity.

Future improvement needed via 
metaheuristic optimization for better 
scalability and computational efficiency.
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Table 2. Comparison of Literature Done in Explainable AI Classifier based on Approaches

Author/Reference Technique Significance Limitation

Wani et al [36] DeepXplainer · Improves lung cancer prediction accuracy 
with clear, interpretable explanations.

Limitations in handling data variability across diverse 
lung cancer subtypes and patient populations.

Li et al [37] CGMega · Enhances detection of cancer gene modules Faced limitations in generalizability across diverse 
cancer types and multi-omics datasets.

Abhang & 
Gunjal [38]

G-ECN · Improves drug response prediction with high 
accuracy and biological interpretability.

Requires high-quality data; computationally expensive.

Sekaran et al [39] OPSCC · It aims to improve patient outcomes and 
survival rates through early detection and 
targeted therapies.

Lack generalizability due to potential biases in the 
RNA-seq datasets used for analysis.

Morabito et al [40] DeepSHAP · enhances diagnostic and prognostic gene 
selection accuracy

Limited scalability with large, complex genomic 
datasets due to computational demands. 

Yang et al. [41] MHGCN · Captures complex CDP interactions and 
enhances predictive accuracy.

Dependent on dataset quality; high computational cost.

Gutierrez-Chakraborty
 et al [42]

XAI framework · Demonstrating high predictive and 
therapeutic relevance

Framework's applicability may be limited by its focus 
on a specific demographic

Abuzinadah
 et al [43]

Predictive model · Enhances cancer prediction reliability
· Achieving 96.87% accuracy

Leads its generalizability to other cancer types or 
diverse data sources.

Altini et al [44] CAD · Improves breast tumour assessment by 
combining accuracy with interpretability
· SHAP-based analysis enhances understanding 
of model decisions

Model may limit its effectiveness across varied clinical 
scenarios.

Rajpal et al [45] XAI-CNVMarker · AI-powered platform for identifying 
interpretable biomarkers in breast cancer.
· The model had a classification accuracy of 
0.712 with a 95% confidence interval.

Reliance on specific datasets for validation could 
restrict the generalizability of the identified biomarkers 
across diverse patient populations.

personalized therapy. However, its performance depends 
on the quality and completeness of high-throughput 
datasets, and the computational cost of multi-channel 
graph learning may restrict scalability in real-world 
clinical environments.

Gutierrez-Chakraborty et al [42], researched an XAI 
framework for artificial intelligence methodology for 
finding and validating essential genetic indicators for HCC 
prediction. The technique involves evaluating medical and 
data on gene expression to discover possible biomarkers 
with predictive value. The research employs advanced 
artificial intelligence algorithms that have been established 
against large genetic expression datasets, proving the 
biomarkers’ accuracy in predicting and therapeutic utility. 
Key biomarkers such as TOP3B, SSBP3, and COX7A2L 
have been shown to be influential in many models, 
increasing HCC prognosis beyond AFP. These biomarkers 
are also relevant to the Hispanic community, which is 
consistent with the overall purpose of demographic-
specific research. However, the framework’s applicability 
may be limited by its focus on a specific demographic, 
potentially hindering generalizability to other populations.

Abuzinadah et al [43], proposed predictive model 
employs a stacking ensemble approach that combines 
the advantages objective both boosting and bagging 
classifiers, with the objective of increasing prediction 
accuracy and reliability. This combination minimizes 
variation while improving generality, yielding better 
cancer forecasting findings. The suggested approach 
achieves 96.87% accuracy, this represents the greatest 
performance of the model recorded on this set of data 
to date when every attribute are considered. The data is 
evaluated with SHAPly, which is an explainable artificial 
intelligence technique. When contrasted with other 

cutting-edge models, the suggested model outperforms 
them. Despite, the model may face limitations in 
scalability and adaptability when applied to different 
datasets or cancer types, potentially impacting its broader 
applicability.

Altini et al [44], created an explainable computer-aided 
diagnosis (CAD) system to help pathologists assess 
tumour cellularity in breast histopathology slides. The 
system compared an end-to-end DL technique that used 
a Mask R-CNN segmentation instance architecture to a 
two-stage procedure that extracts features based on the 
morphology and textured properties of cell nuclei. SVM 
algorithms and ANN are used to develop classifiers 
that can differentiate among neoplastic and non-tumor 
nuclei. Overall SHAP explainable artificial intelligence 
method has been applied to evaluate feature significance, 
providing a clearer understanding of the judgments made 
by ML models. An experienced pathologist validated 
the model to ensure its clinical usefulness. However, 
two-stage pipeline models are substantially less precise, 
they are easier to interpret, which may increase confidence 
in using AI-based CAD systems in clinical processes. 
However, The CAD system’s reduced accuracy in the 
two-stage model may limit its effectiveness across varied 
clinical scenarios.

Rajpal et al [45], researched XAI-CNVMarker, 
an AI-powered platform for identifying interpretable 
biomarkers in breast cancer. The approach use DL to 
create a classification model, which is then examined using 
explainable AI techniques to find 44 CNV biomarkers. 
The model had a classification accuracy of 0.712 with 
a 95% confidence interval. The biomarkers were also 
validated using METABRIC, illustrating the significance 
of transparent artificial intelligence in identifying practical 
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indicators. However, reliance on specific datasets for 
validation could restrict the generalizability of the 
identified biomarkers across diverse patient populations 
(Table 2).

Recent developments in cancer diagnosis have used AI 
and DL to improve forecast accuracy and interpretability. 
DeepXplainer and CGMega are models that improve lung 
cancer forecasts, but their generalizability across cancer 
types is limited. Deep GONet is highly accurate across 
gene expression datasets, although it suffers with novel 
gene connections. The OPSCC model tries to improve 
patient outcomes by early identification, however it may 
be influenced by RNA-seq data. DeepSHAP enhances 
gene selection accuracy but has scalability issues with 
huge datasets. PathDeep improves cancer biology 
understanding for tailored medicines, however it may 
struggle with limited data. The XAI methodology has 
strong predictive value, however it may not generalize 
well to different cancer types.

3.3 Neural network based on approaches
Neural networks have emerged as powerful tools for 

cancer subtype classification due to their ability to model 
complex, non-linear relationships in high-dimensional 
gene expression data. CNNs are particularly effective at 
extracting local co-expression patterns among groups of 
genes, while recurrent neural networks (RNNs) capture 
sequential dependencies in gene regulatory pathways. 
Autoencoders and deep embedding frameworks reduce 
dimensionality and denoise input data, enabling the 
extraction of biologically meaningful features from sparse 
datasets. More recently, attention-based mechanisms 
have further improved interpretability by highlighting 
the most informative genes or pathways, making 
predictions more clinically transparent. Together, these 
architectural innovations mitigate key challenges in gene 
expression analysis, such as high dimensionality, sparsity, 
heterogeneity, and lack of interpretability, while enhancing 
robustness and classification performance. Neural network 
designs are being used to categorize Using gene expression 
data to determine cancer subtypes, enhancing diagnostic 
accuracy and personalizing treatment regimens. These 
architectures, such as convolutional and RNN, extract 
significant Information underlying protein expression 

profiles enable the differentiation between cancer 
subtypes. Attention mechanisms and transfer learning 
procedures improve model interpretability by identifying 
key genes linked with distinct subtypes. Overall, this 
paradigm illustrates neural networks’ potential to advance 
precision oncology by robustly classifying cancer 
Subtypes employing transcript expression information, 
as seen in the Figure 4 [46].

Liu et al.  [47] conducted a comprehensive 
bioinformatics study using artificial neural networks 
(ANNs) to identify characteristic genes associated with 
cervical cancer (CC). By analyzing RNA sequencing 
data from multiple GEO datasets, the study identified 
differentially expressed genes (DEGs) between normal 
and cancerous cervical tissues. The authors applied 
random-forest filtering and established a neural network 
model using these characteristic genes, with Cox 
regression employed to verify the predictive accuracy. 
The proposed approach offers several benefits, including 
robust prediction of CC, insights into molecular 
mechanisms, identification of potential biomarkers, and 
guidance for immunotherapeutic interventions. However, 
limitations include the reliance on public datasets without 
experimental validation, incomplete understanding of 
viral and tumor immune escape mechanisms, and the need 
to consider epigenetic and immune regulatory factors, 
highlighting the necessity for further studies to validate 
and expand these findings.

Ren et al. [48] proposed a Multi-view Graph 
Neural Network (MVGNN) to classify breast cancer 
differentiation and subtypes by integrating multi-omics 
data (gene expression, DNA methylation, and CNV). 
The framework constructs weighted patient similarity 
networks for each omics type, applies Graph Convolutional 
Networks (GCN) to learn features, and employs an 
attention mechanism to fuse multi-omics representations. 
This model was designed to overcome the limitations of 
single-omics and traditional ML methods that often bias 
predictions toward one data type. Experimental validation 
on TCGA datasets demonstrated that MVGNN achieved 
superior performance in both binary and multi-class 
breast cancer classification compared to baseline models. 
The main benefits include robust multi-omics integration 
and improved accuracy, but its reliance on extensive 
preprocessing and the complexity of heterogeneous data 
fusion pose challenges for clinical adoption and scalability.

Zhou et al [49], The Nottingham Prognostics Index 
(NPI) is a prognostic metric designed for predicting 
mortality in treatable basic cancer of the breast. With 
advances in next-generation sequencing, multi-omics data 
collection allows for the examination of a wide range of 
physiological measurements to gain a better knowledge of 
disease progression. This work sought to find multi-omics 
indicators linked to breast cancer prognosis and survival, 
as well as to create a prediction model for several NPI 
classes. The suggested model performed exceptionally 
well, with an accuracy of 98.48% and an area under 
the curve (AUC) of 0.9999. The findings demonstrate 
substantial connections between the collected omics data 
and breast cancer prognosis and survival, highlighting 

Figure 4. Type of Neural Network Architectures
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Table 3. Comparison of Literature Done in Neural Network Based on Approaches

Author/
Reference

Technique Significance Limitation

Liu et al. [47] ANN with RF filtering Identifies characteristic genes of cervical cancer, 
provides robust prediction, insights into molecular 
mechanisms, biomarker discovery, and guidance for 
immunotherapy.

Relies on public datasets without experimental 
validation; incomplete understanding of viral/
tumor immune escape; epigenetic and immune 
regulatory factors not fully considered.

Ren et al. [48] MVGNN Robust integration of multi-omics data; improved 
breast cancer classification.

Requires extensive preprocessing; complex for 
clinical use.

Zhou et al [49] High-dimensional 
embedding

Reduces dimensionality by embedding multi-omics 
features into a compact space, enabling 
the discovery of survival biomarkers and improving 
breast tumor prediction.

Dependence on multi-omics data limits 
applicability to less comprehensive datasets.

Yin et al [50] Multi-omics graph 
convolutional network 
(M-GCN)

Captures complex biological interactions by 
modeling gene–gene relationships within graph 
structures, enhancing molecular subtyping accuracy 
through integrated multi-omics learning.

Computationally intensive due to integration of 
high-dimensional multi-omics data.

Choi et al [51] moBRCA-net Combines DLwith self-attention to prioritize 
biologically significant features, improving 
prediction accuracy and supporting targeted 
treatment design.

Limited performance with incomplete datasets, 
while self-attention increases computational 
demands.

Allogmani 
et al. [52]

CPLDC-AOATL combining 
bilateral filtering, 
Inception-ResNetv2, 
and BiLSTM

Provides rapid, automated, and highly accurate 
detection of cervical precancerous lesions from 
medical images; aids early diagnosis and treatment 
with 99.53% accuracy.

Relies on specific pre-trained models and 
datasets; requires incorporation of multi-modal 
data and improved interpretability for clinical 
adoption.

Amin 
et al. [53]

Multimodal DL with CNNs High accuracy in NSCLC classification using 
RNA-seq, miRNA-seq, and WSIs.

Limited to selected modalities; generalization 
across cancers is challenging.

Kesimoglu 
et al [54]

SUPREME Employs a hybrid DL pipeline that enhances 
subtype prediction accuracy by integrating multiple 
omics signals into a unified model.

Relies on availability of comprehensive 
datasets.

Guo et al [55] BCDForest DL model Designed to work with small-scale biological 
datasets by combining ensemble methods with DL, 
reducing overfitting and improving generalizability.

May underperform when applied to datasets 
with very different structures.

Geeitha 
et al. [56]

Bi-RNN with HSIC 
and ensemble ML classifiers 

Predicts cervical cancer recurrence and survival; 
enables early risk stratification, biomarker 
identification, and preventive interventions.

Dependent on retrospective datasets; requires 
real-time clinical validation; integration with 
additional genomic/clinical data needed for 
broader applicability.

biomarkers such as CDCA5, IL17RB, MUC2, NOD2, 
and NXPH4 in the gene expression dataset. Along with 
MED30, RAD21, EIF3H, and EIF3E from the copy 
number data. However, the reliance on multi-omics data 
may limit applicability to less comprehensive datasets, 
and high-dimensional analysis can increase complexity, 
risking overfitting.

Yin et al [50], proposed multi-omics graph 
convolutional network (M-GCN) is a new molecular 
subtyping system that uses robust graph convolutional 
networks to incorporate multi-omics data. To choose 
transcriptome features linked with molecular subtypes, 
the framework uses the Hilbert-Schmidt independence 
criterion of least absolute shrinkage and selection operator 
(HSIC Lasso). It then generates multi-view representations 
of samples using gene expression, single nucleotide 
variants (SNV), and copy number variation (CNV) data. 
The M-GCN model surpasses existing techniques for 
classifying breast and stomach cancers, and its identified 
subtype-specific biomarkers correspond to clinical 
knowledge, meaning accurate diagnosis and targeted 
treatment development. However, the reliance on graph 
structures may limit the model’s ability to capture complex 
biological interactions, while integrating multi-omics data 
can increase computational complexity.

Choi et al [51], presented moBRCA-net, DL- Cancer 

of the breast category identification framework utilizing 
multi-omics information. It takes into account biological 
interactions when combining data on expression of genes, 
DNA methylation, and microRNA expression. Each 
dataset is processed by a self-attention module, which 
determines the significance of each feature. The features 
are translated into new representations, which enable 
moBRCA-net to predict subtypes. Despite, The model’s 
dependence on multi-omics data may limit applicability 
with incomplete datasets, and self-attention increases 
computational demands.

Allogmani et al. [52] proposed an enhanced method 
for detecting and classifying cervical precancerous 
lesions using the Archimedes Optimization Algorithm 
with Transfer Learning (CPLDC-AOATL). The approach 
integrates bilateral filtering for image denoising, Inception-
ResNetv2 for feature extraction, AOA for hyperparameter 
tuning, and a BiLSTM model for classification. Tested 
on benchmark medical image datasets, the CPLDC-
AOATL method achieved a high accuracy of 99.53%, 
outperforming existing techniques. The benefits include 
rapid, automated, and highly accurate detection of cervical 
cancer from images, aiding early diagnosis and treatment. 
Limitations include reliance on specific pre-trained models 
and datasets, with future work needed to incorporate multi-
modal data and improve interpretability for clinical use.
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Table 4. Comparison of Literature Done in Transfer Learning based on Approaches

Author/Reference Technique Significance Limitation

Tabassum 
et al. [58]

Dimensionality reduction and XAI with 
ensemble classifiers 
(Logistic Regression, SVM, XGBoost) on 
mRNA gene expression data

· Accurately classifies 33 cancer types, 
identifies biologically meaningful 
biomarkers.
· Reduces computational cost, and 
enables personalized treatment.

Dependent on pre-processed gene 
expression datasets; requires clinical 
validation for real-world applicability.

Franchini 
et al [59]

Single-cell gene set enrichment analysis 
(scGSEA) and single-cell mapper 
(scMAP)

· Enhances single-cell analysis by 
accurately identifying gene activity 
patterns
·Aids in mapping novel cell profiles, 
improving cancer research insights.

Require extensive computational resources 
for high-dimensional single-cell data 
analysis.

Ming 
et al [60]

DCE-MRI · Enhances predictive accuracy for HR 
status and PAM50 molecular.
· Provides a gene expression-based 
approach

Potentially affecting comprehensive subtype 
classification.

Pan 
et al. [61]

Trans-PtLR (Robust Transfer Learning 
with t-distributed errors)

· Improves prediction accuracy in gene 
expression by handling outliers and 
heavy-tailed data.

Computationally intensive; performance 
depends on source dataset quality.

Samee 
et al [62]

(GN-AlexNet) · Demonstrates significant 
improvements in accuracy 
· Enhance feature extraction and 
classification performance.

Limit its deployment in 
resource-constrained environments or for 
real-time applications.

Muhammad
 et al [63]

DRNet · Enhances accessibility for healthcare 
professionals
· Supporting early diagnosis and 
intervention.

Require retraining on diverse datasets to 
maintain diagnostic accuracy across varied 
breast cancer subtypes.

Zhang
 et al [64]

T-GEM · providing insights into biological 
functions and potential biomarkers
· Supporting targeted cancer research 
and diagnostics.

T-GEM have limitations in handling 
large-scale gene expression data with 
complex interactions, potentially impacting 
its scalability for diverse cancer types.

Wang 
et al [65]

Graph-based deep 
embedding clustering (GDEC)

· Highlighting its enhanced analytical 
capability
· Improvements in clustering accuracy

With high-dimensional noise in diverse 
scRNA-seq datasets.

Attallah 
et al [66]

CerCan·Net · CerCan·Net achieves high accuracy 
for cervical cancer diagnosis

Face limitations in generalizability across 
diverse cervical cancer subtypes and varied 
dataset conditions.

Srikantamurthy 
et al [67]

hybrid CNN-LSTM model · Cancer subtype differentiation in 
diagnostic applications.
·Achieves high accuracy in breast 
cancer histopathology classification,

Limited generalizability across diverse 
histopathology datasets due to variability 
in imaging conditions

Amin et al. [53] introduced a multimodal DL 
framework for non-small cell lung cancer (NSCLC) 
classification, integrating RNA-seq, miRNA-seq, and 
whole-slide images (WSIs). Unlike earlier approaches that 
either used traditional ML on molecular data or single-
modality deep learning, this study leveraged CNNs across 
multiple modalities. Experimental results demonstrated 
high classification performance, with accuracies of 96.79% 
(RNA-seq), 98.59% (miRNA-seq), and 89.73% (WSIs), 
alongside strong F1-scores and AUC values, surpassing 
prior state-of-the-art results. The study highlights CNNs’ 
capability to handle high-dimensional omics data and 
large-scale pathology images, enabling early-stage 
cancer detection and precise subtype classification. While 
results are promising, challenges remain in extending the 
approach to additional modalities (e.g., DNA methylation, 
CNV) and generalizing across different cancer types.

Kesimoglu et al [54], proposed SUPREME is a 
subtype prediction technology created by analysing 
multiomics data and patient relationships using network 
convolutions on different patient matching matrices. 
It creates patient embedding based on all multiomics 
features and incorporates all potential combinations 

to capture complimentary signals. The strategy beat 
previous integrated cancer prediction tools and baseline 
methodologies across three datasets from The Cancer 
Genome Atlas (TCGA) and the Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC). 
SUPREME-inferred subtypes had considerably 
greater survival rates compared to nine cancer subtype 
differentiating tools and baseline techniques. The findings 
show that, with the correct combination of datatypes and 
patient relationships, SUPREME can identify hidden 
properties in tumor subgroups that generate substantial 
mortality variations and enhance the fundamental reality 
identify that is mostly based on an individual datatype. 
However, the model’s reliance on multiomics data may 
restrict its utility in situations when such extensive datasets 
are absent.

Basaad et al. [55] suggested GraphX-Net, a Shapley 
Value-based Graph Neural Network (GNN) framework 
for predicting breast cancer relapse. The model applies 
graph convolutional layers to learn node embeddings and 
uniquely integrates Shapley values to quantify feature 
contributions, manage node thresholds, and capture 
neighboring effects, thereby improving interpretability 
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alongside prediction accuracy. Through this combination, 
GraphX-Net forms distinct patient clusters and offers 
transparent insights into risk factors influencing relapse, 
bridging the gap between accuracy and explainability. 
Experimental evaluation on the METABRIC cohort 
confirmed state-of-the-art performance, while also 
enabling visualization of graph connectivity and feature 
importance. 

Geeitha et al. [56] developed a bidirectional recurrent 
neural network (Bi-RNN) model to predict cervical 
cancer recurrence and patient survival by integrating 
clinical risk factors and lncRNA gene signatures. Clinical 
features were analyzed using Random Forest, Logistic 
Regression, Gradient Boosting, and SVM, with Random 
Forest achieving 91.2% precision. The Hilbert-Schmidt 
Independence Criterion (HSIC) linked lncRNA signatures 
with protein-coding genes to identify biomarkers 
associated with recurrence. The Bi-RNN model effectively 
predicted recurrence and survival, enabling early 
risk stratification and targeted interventions. Benefits 
include accurate prognosis, biomarker discovery, and 
preventive guidance, while limitations involve reliance on 
retrospective datasets and the need for real-time clinical 
validation (Table 3).

Recent research demonstrates that neural network 
architectures provide complementary strategies to 
address the intrinsic challenges of gene expression data 
in cancer diagnostics. Convolutional models, such as 
bio-inspired CNNs, effectively capture local co-expression 
patterns while reducing noise. Self-explainable 
frameworks like Deep GONet enhance interpretability 
by linking gene features to phenotypes. Embedding and 
graph-based approaches, including high-dimensional 
embeddings and M-GCN, reduce dimensionality 
and model complex gene–gene interactions across 
multi-omics inputs. Optimization-driven RNNs capture 
sequential dependencies in regulatory pathways, while 
attention-based networks such as moBRCA-net highlight 
biologically significant features, bridging predictive 
performance with clinical interpretability. Ensemble and 
hybrid methods (e.g., BCDForest, SUPREME) improve 
robustness, particularly for small or heterogeneous 
datasets. Taken together, these advances underscore how 
neural networks are not only improving accuracy but also 
tackling key issues of dimensionality, heterogeneity, and 
clinical usability, positioning them as critical tools for 
next-generation cancer subtype classification.

3.4 Transfer learning based on approaches
A transfer of ownership method of learning for 

tumor subtype categorization using expression of genes 
information uses pre-trained models to improve subtype 
identification accuracy and efficiency [57]. Using 
knowledge obtained from large datasets, this strategy 
successfully adapts existing models to new, perhaps 
smaller or more specific gene expression datasets, 
allowing for enhanced classification performance with 
less training data. The system includes approaches such 
as fine-tuning and feature extraction, allowing the model 
to capture significant biological signals while overcoming 

the obstacles of overfitting and data sparsity. This strategy 
not only speeds up the model training process, but it also 
improves generalizability across many cancer types, 
thereby helping precision medicine initiatives by allowing 
for accurate and quick cancer subtype classification as 
shown in Figure 5.

Tabassum et al. [58] proposed a precision cancer 
classification framework using mRNA gene expression 
data, combining dimensionality reduction, feature 
selection, and Explainable AI (XAI) techniques. The 
pipeline reduces the original 19,238-gene dataset to 500 
key features while retaining critical information, and 
employs an ensemble of Logistic Regression, SVM, 
and XGBoost classifiers to achieve 96.61% accuracy 
across 33 cancer types. Explainable AI, via SHAP scores, 
identifies and prioritizes cancer-specific biomarker 
genes, validated against Differential Gene Expression 
(DGE) analysis. The benefits include accurate, rapid 
cancer classification, reduced computational cost, and 
identification of biologically meaningful biomarkers 
for personalized treatment. Limitations involve reliance 
on preprocessed gene expression datasets and the need 
for clinical validation to confirm biomarker utility in 
real-world scenarios.

Franchini et al [59], Researchers have created two 
novel approaches for studying single-cell gene set 
enrichment analysis (scGSEA) and single-cell mapper 
(scMAP). ScGSEA detects coordinated gene activity at the 
single-cell level using latent data representations and gene 
set enrichments, whereas scMAP uses transfer learning 
techniques to repurpose and situate freshly created cells 
into the standard cell the atlas database. Both approaches 
can accurately duplicate repeating patterns of pathway 
activation exhibited by cells under multiple experimental 
conditions, as well as place and contextual novel a single-
cell characteristics on the breast tumor map. May, require 
extensive computational resources for high-dimensional 
single-cell data analysis.

Ming et al [60], researched DCE-MRI technology 
Using tumor and peri-tumor region slice images, AI 
models can predict HR status and PAM50 molecular 

Figure 5. Stages in Transfer Learning
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subtypes of breast cancer. Inception-v3 with Exception 
systems performed better overall, although there was little 
variation in ER status or PAM50 classes. Comparisons 
with previous studies revealed that the majority of current 
investigations predict IHC-based molecular subtypes, but 
our algorithms predicted gene expression-based chemical 
types, notably PAM50 fundamental types, providing a 
better knowledge of illness characteristics. The models 
were compared to previous radionics papers. However, 
Limited in differentiating ER status and specific PAM50 
subtypes, potentially affecting comprehensive subtype 
classification.

Pan et al. [61] introduced a robust transfer learning 
framework (Trans-PtLR) for integrating multi-source 
gene expression data under high-dimensional linear 
regression. Unlike traditional approaches that assume 
normal error distribution, Trans-PtLR incorporates 
t-distributed errors, enabling robustness against outliers 
and heavy-tailed data, which are common in genomic 
datasets. Their three-step algorithm combines penalized 
maximum likelihood estimation with transferable source 
selection, effectively preventing negative transfer. Applied 
to GTEx datasets, the model demonstrated superior 
accuracy in predicting gene expression (e.g., JAM2 gene 
across multiple brain tissues) compared to conventional 
transfer learning methods. This advancement highlights 
the potential of robust transfer learning in capturing 
complex gene regulatory patterns, thereby supporting 
improved prediction in gene-expression–based cancer 
subtype analysis.

Samee et al [62], investigated a hybrid deep transfer 
learning (GN-AlexNet) model for BT tri-classification 
(pituitary, meningioma, and glioma). The proposed 
solution combines GoogleNet architecture with the 
AlexNet model, removing GoogleNet’s five layers and 
adding ten layers from the AlexNet model to automatically 
extract and classify attributes. On the same CE-MRI 
dataset, the proposed model was compared to transfer 
learning techniques (VGG-16, AlexNet, SqeezNet, 
ResNet, and MobileNet-V2) and ML/DL. The proposed 
model outperformed current strategies in terms of both 
accuracy and sensitivity (99.51 percent and 98.90 percent, 
respectively).However, the model’s complexity may limit 
its deployment in resource-constrained environments or 
for real-time applications.

Muhammad et al [63], described a new deep feature 
extraction DRNet model for detecting Identification of 
breast cancer subtypes using the Breakhis data. The model 
uses a transfer learning technique, which relies on trained 
multilayer artificial neural networks that have little storage 
and processing capability. The model outperforms certain 
previous literature studies and is capable of extracting 
deep features from raw histology pictures of breast 
cancer. This methodology allows medical professionals to 
acquire quick and precise findings, identifying treatments 
for various Breast tumor types are identified early on, 
preserving lives and expenditures. May, require retraining 
on diverse datasets to maintain diagnostic accuracy across 
varied breast cancer subtypes.

Zhang et al [64], researched a new DL architecture 

known as T-GEM, or Transformer for Gene Expression 
Modelling, which is beneficial for predicting cancer-
related phenotypes. The model employs a thorough 
learning method, with the first layer focused on gene-gene 
interactions and subsequent layers focusing on phenotype-
related genes. T-GEM’s self-attention can identify 
biological functions linked to expected phenotypes. The 
researchers also devised a method for extracting the 
regulatory network, which identified network hub genes 
as potential markers for expected symptoms. However, 
T-GEM have limitations in handling large-scale gene 
expression data with complex interactions, potentially 
impacting its scalability for diverse cancer types.

Wang et al [65], researched introduces graph-based 
deep embedding clustering (GDEC), a method for 
grouping scRNA-seq data using Transferring knowledge 
between animals and batch. GDEC utilizes convolutional 
networks based on graphs to overcome sparse gene 
expression matrices and split groups of cells into a space 
with fewer dimensions, therefore decreasing noise effects. 
The method builds a model from existing scRNA-seq 
datasets and fine-tunes it with transfer learning techniques. 
GDEC was used to uterine fibroids scRNA-seq data, 
exposing a new cell type and uncovering new routes 
between different cell types, demonstrating its improved 
analytical capabilities. The researchers also performed 
cross-species and cross-batch clustering investigations. 
However, Graph-based deep embedding clustering 
enhances analytical capability and clustering accuracy 
but may face limitations with high-dimensional noise in 
diverse scRNA-seq datasets.

Attallah et al [66], introduced CerCan·Net, an effective 
computer-assisted diagnosis tool for cervical cancer. 
It uses three lightweight CNNs that have fewer parameters 
and deeper layers than prior models: Mobile Net, 
DarkNet-19, and ResNet-18. CerCan·Net utilizes transfer 
learning to extract deep features from the final three levels 
of each CNN, including input from many layers. It then 
investigates the impact of developing a smaller set of 
deep features to distinguish various subgroups of cervical 
cancer. CerCan·Net achieves 97.7% and 100% accuracy 
for SIPaKMeD and Mendeley datasets, respectively, 
with 400 and 200 features. Its superior performance in 
comparison to contemporary CADs makes it appropriate 
for cytopathologists in automated inspection, avoiding 
limitations in ordinary diagnostic. Despite, CerCan·Net, 
while highly accurate, face limitations in generalizability 
across diverse cervical cancer subtypes and varied dataset 
conditions.

Srikantamurthy et al [67], proposed hybrid CNN-
LSTM model was tested against existing models for breast 
histopathology image categorization, such as VGG-16, 
ResNet50, and Inception. The Adam optimizer was 
determined to be the most accurate and cause the least 
amount of model loss. The model has the best overall 
accuracy of 99% for binary classification of benign and 
malignant cancer, and 92.5% for classification into multiple 
classes of benign and dangerous cancer subcategories, 
respectively. However, limited generalizability across 
diverse histopathology datasets due to variability in 
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imaging conditions (Table 4). 
Advanced models in cancer research have improved 

diagnostic accuracy and feature extraction. DEGnext 
enhances prediction accuracy by identifying important 
gene expressions, whereas single-cell analysis methods 
such as scGSEA and scMAP precisely detect gene activity 
patterns and map cell profiles. DCE-MRI and T-GEM 
improve molecular categorization and gene function 
insights, although they have scalability limitations. 
The ATRCN model improves liver cancer prognosis by 
identifying prognostic markers, although its applicability 
may be limited across different cancer types. GN-AlexNet 
and DRNet provide better accuracy and accessibility 
for early diagnosis, however deployment in resource-
constrained situations or with different cancer subtypes 
may necessitate changes. GDEC’s deep embedding 
clustering and CerCan·Net are highly accurate in scRNA-
seq and cervical cancer diagnosis, but may be limited by 
dataset diversity.

3.5 Critical Synthesis of Gaps
The comparative analysis of ML, explainable 

AI, neural network, and transfer learning approaches 
highlights several recurring limitations that continue 
to hinder the clinical applicability of cancer subtype 
classification models. These gaps can be broadly grouped 
into three categories: data-related, model-related, and 
clinical translation.

• Data-related gaps: Gene expression and multi-omics 
datasets remain fragmented, heterogeneous, and often 
limited in sample size. The lack of standardized protocols 
for data collection, preprocessing, and normalization leads 
to inconsistencies across studies, making reproducibility 
and cross-comparison challenging. Small and imbalanced 
datasets also increase the risk of biased models that fail 
to generalize across populations.

• Model-related gaps: While DL and neural networks 
capture complex, non-linear biological relationships, 
they are computationally intensive, prone to overfitting, 
and difficult to scale for large, high-dimensional omics 
datasets. MLmodels such as SVMs and decision trees 
often provide interpretability but struggle with the 
complexity of modern multi-omics data. Even when 
models achieve high accuracy in controlled settings, their 
robustness and scalability remain limited when applied to 
diverse real-world datasets.

• Clinical translation gaps: Despite progress in 
explainable AI, many models still operate as “black boxes,” 
limiting their clinical interpretability and trustworthiness. 
Moreover, the absence of cross-institutional validation 
and adaptation mechanisms restricts their deployment 
across varied healthcare systems. The lack of integration 
with clinical workflows further slows the transition from 
research prototypes to practical diagnostic tools.

Taken together, these cross-cutting gaps indicate that 
no single methodological category is sufficient on its own. 
A unified framework that balances predictive accuracy, 
computational efficiency, and interpretability is required 
to ensure clinically viable solutions. Future directions 
should prioritize integrating multi-omics data, advancing 

explainable AI techniques, optimizing algorithms for 
low-resource environments, and employing transfer 
learning for robust generalization across populations. 
This synthesis sets the stage for the conceptual framework 
proposed in the following section, which envisions a 
pathway toward scalable, interpretable, and patient-
centered cancer subtype classification.

4. Summary and Discussion
This review highlights the limitations and Future 

Prospects in Tumor Subtype Identification Utilizing 
Expression Gene Databases, underscoring the potential of 
ML and explainable AI frameworks to transform cancer 
diagnostics. However, challenges remain in data quality, 
interpretability, computational demands, generalizability, 
tumor heterogeneity, and standardization. Addressing 
these issues requires integrating multi-omics data, 
advancing XAI techniques, optimizing computational 
methods, leveraging transfer learning, and creating 
standardized protocols. Future research can improve the 
robustness, scalability, and clinical utility of ML models, 
contributing to more accurate cancer subtype classification 
and improved patient outcomes.

• The lack of standardized practices in data collection, 
pre-processing, and model evaluation in cancer research 
studies hinders comparability across studies.

• Advanced pre-processing and data normalization 
techniques can improve data reliability by addressing 
variability in gene expression data quality and 
inconsistencies across diverse sources

• Advance XAI techniques aim to enhance the 
accessibility, interpretability, and clinical usefulness 
of complex ML models, particularly deep learning, in 
clinical practice.

• Optimizing algorithms can improve computational 
efficiency and scalability of DL models, especially in 
low-resource settings.

• To enhance model robustness across different cancers 
and populations, it is recommended to expand the use of 
transfer learning and diversify training datasets.

• Integrating multi-omics data and developing 
personalized models can enhance subtype accuracy by 
better accounting for individual tumor characteristics, 
addressing the challenges faced by many models.

• Dataset biases and representational limitations: Many 
widely used datasets, such as The Cancer Genome Atlas 
(TCGA), are disproportionately composed of samples 
from specific geographic regions, ethnic groups, and 
clinical settings. This demographic skew introduces 
biases that can limit the generalizability of models to 
underrepresented populations. Moreover, variations in 
sequencing protocols, institutional standards, and data 
curation practices can compound these disparities. Future 
research should address these limitations by incorporating 
more diverse, multi-institutional datasets and developing 
fairness-aware learning approaches that explicitly account 
for population heterogeneity.

• Clinical integration of AI-driven cancer subtype 
classifiers faces significant hurdles. Regulatory approval 
processes (e.g., FDA, EMA) require rigorous validation, 
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standardized reporting, and clear evidence of safety and 
efficacy. Equally important is physician acceptance: models 
must provide interpretable outputs that clinicians can trust, 
while also integrating smoothly into existing diagnostic 
workflows and electronic health records (EHRs). Without 
addressing these barriers, even technically strong models 
may fail to achieve real-world impact.

By addressing these limitations with targeted 
advancements, Future research can increase the practical 
impact and clinical usefulness of disease subgroup 
categorization using ML approaches by addressing these 
constraints through targeted breakthroughs.

To address these cross-cutting gaps, we propose an 
integrative framework for AI-driven cancer subtype 
classification. This framework positions ML as the 
foundation for baseline classification, neural networks 
as advanced engines for high-dimensional data, XAI as 
the interpretability layer to bridge clinical usability, and 
transfer learning as the adaptability mechanism to ensure 
generalization across datasets and populations. Figure 6 
illustrates this unified perspective.

4.1 Translational Challenges and Solutions
While technical advancements in ML, NN, XAI, 

and TL have significantly improved cancer subtype 
classification, the translation of these methods into clinical 
practice faces major challenges:

• Regulatory Hurdles – AI-based diagnostic systems 
must meet stringent requirements from regulatory bodies 
such as the FDA and EMA. Demonstrating robustness, 
reproducibility, and patient safety across diverse 
populations is essential before clinical approval.

• Physician Acceptance and Trust – Clinicians require 
models that are not only accurate but also interpretable. 
Black-box systems, even with high predictive power, often 
face resistance due to the lack of transparent decision-
making processes. XAI-driven approaches offer a pathway 
to bridging this gap.

• Workflow Integration – AI tools must be seamlessly 
integrated into existing clinical infrastructures, such 
as electronic health records (EHRs) and hospital IT 
systems, without creating additional burden on healthcare 
providers.

• Ethical and Legal Considerations – Liability in 
cases of misdiagnosis, protection of patient privacy, and 
compliance with data-sharing regulations are critical 
issues that must be addressed before deployment.

Proposed Solutions
• Develop standardized reporting protocols to improve 

reproducibility and regulatory acceptance.
• Co-design AI tools with physicians to enhance trust 

and usability.
• Employ federated learning and secure multi-

institutional data-sharing frameworks to overcome data 
heterogeneity while preserving privacy.

• Incorporate explainability modules (XAI) and 
uncertainty quantification in models to improve physician 
confidence in clinical decision-making.

By explicitly addressing these translational barriers, 

future research can ensure that AI-driven cancer subtype 
classification not only achieves technical excellence but 
also delivers clinically deployable, ethically sound, and 
patient-centered solutions.

In conclusion, the article highlights the potential for 
change of neural networks. And explainable AI techniques 
in cancer subtype classification using gene expression data. 
While current advancements offer improved diagnostic 
accuracy, interpretability, and feature extraction, 
significant challenges remain, including issues with data 
quality, computational scalability, model generalizability, 
and the complexity of tumor heterogeneity. To overcome 
these limitations, future studies should prioritize the 
incorporation of multi-omics data, and the development 
of sophisticated preliminary processing and normalization 
tools, optimization of algorithms for low-resource 
settings, and expansion of transfer learning frameworks to 
enhance model robustness across diverse cancer types and 
populations. Additionally, creating standardized protocols 
for data collection, pre-processing, and evaluation will be 
essential to improve comparability and reproducibility 
across studies. By focusing on these advancements, the 
field can work toward AI-driven solutions that are more 
accurate, scalable, and clinically applicable, ultimately 
Contributing to better outcomes for patients with a 
more tailored cancer therapy strategy. However, for 
AI frameworks to transition from research to clinical 
deployment, regulatory compliance, physician acceptance, 
and seamless integration into healthcare systems remain 
critical. Future studies should incorporate validation 
strategies aligned with medical regulations, engage 
clinicians in co-designing interpretable systems, and 
develop deployment pathways compatible with hospital 
IT infrastructures. Only then can these AI solutions move 
beyond academic promise to deliver tangible benefits in 
clinical oncology. The distinctive contribution of this 
review lies in its critical synthesis of recurring challenges 
and the introduction of a conceptual framework uniting 
ML, NN, XAI, and TL. This framework offers a roadmap 
for future research to move beyond isolated methods 
toward integrated, scalable, and clinically relevant cancer 
diagnostic systems.

Figure 6. Conceptual Framework for AI-driven Cancer 
Subtype Classification
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