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Abstract

Improved diagnostic models for personalized Cancer profiling are required significantly, utilizing Al methods to
enhance accuracy, support early detection, and inform targeted treatment strategies. Despite significant progress
in cancer prediction, current approaches often struggle with issues of generalizability across diverse patient
cohorts, computational inefficiencies, and managing heterogeneous data sources. This paper delves into the
fast developing topic of Al-driven tumor class categorization utilizing expression of genes data. Focusing on
machine learning (ML), explainable artificial intelligence (XAI), neural network, and transfer learning techniques.
The integration of innovative Al methodologies is crucial for understanding complex genetic interactions,
improving model interpretability through XAI, and enabling adaptive learning through transfer learning. This will
allow medical practitioners to rely on Al-driven insights and provide strong, scalable solutions for everyday
life applications in medicine. The analysis recognizes existing limitations, including the absence of established
methods on cross-institutional sharing of information and the difficulties in maintaining model adaptation to
different tumor subtypes. This work underscores the potential of Al to revolutionize cancer subtype classification,
fostering advancements that could reshape personalized oncology, improve patient outcomes, and establish
a new standard for precision medicine. Unlike prior reviews, this study goes beyond summarizing methods by
synthesizing cross-cutting gaps across ML, neural network (NN), XAI, and transfer learning (TL) approaches.
It further proposes a conceptual framework that integrates these methodologies to guide future research in
developing clinically deployable and patient-centered cancer diagnostic systems.
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1. Introduction

The disease is also the second leading cause of death
worldwide, resulting from aberrant cell development
and metastatic growth [1]. The cells of cancer frequently
multiply independently of development signals and do not
respond to survival/death signals, resulting in apoptosis.
This phenomenon is caused by inherited factors, such as
DNA mutations or epigenetic modifications. Some cancer
genes, like BRCA1/2, are inherited that possess a strong
depth because of their involvement in cellular control.
[2]. Analysing unregulated gene transcription systems in
cancer cells could aid in early diagnosis and treatment.
Identifying certain genes (gene signatures) can lead to

an accurate diagnosis as well as more targeted therapy
choices. Microarray analysis and RNA-seq devices allowed
researchers to develop and evaluate novel mathematical
and statistical models to evaluate genetic expression data,
Calculating transcript concentrations across thousands of
domains over a wide range of human patient samples [3].
Express technology has transformed the study of gene
expression by allowing simultaneous assessments of gene
alterations under a variety of experimental circumstances.
This has allowed for the identification of disease genes,
therapeutic targets, and tumour subtypes [4, 5]. Some
significant genes are connected with particular cancer
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subtype classifications that can be submitted to the
FDA for validation and diagnosis [6]. Furthermore,
the affected gene space frequently comprises noisy and
redundant genes, which might have a negative impact
on classification performance. As an illustration, the
k-nearest-neighbour technique was prone to useless
categorization properties [7].

Data mining techniques are typically classified into
three categories: unsupervised learning, supervised
learning, and reinforcement learning. Supervised learning
uses a labelled training collection for mapping the input
information into the proper output [8]. Unsupervised
learning, in contrast, is not dependent on designated data;
instead, the approach discovers information and pattern
architectures. Such as clustering, on its own. In this
context, the model’s role is to detect patterns or group the
input data into meaningful classes. Supervised learning
typically involves a classification task, where the goal is
to assign data to predefined categories. In unsupervised
learning, clustering is a typical method used to explore
the underlying data distribution, often serving as
a pre-processing step for feature selection [9].

Since gene expression data has increased dramatically,
various methods for analysing and diagnosing disease
utilizing ML techniques have been developed. Using
gene expression data analysis, these approaches classify
samples according to their anticipated survival status.
Methods based on ML are currently developed for
analysing expression profiles. However, the elevated
dimensionality in data from microarray gathering,
along with limited sample sizes, restricts statistical
power for clinical applications [10]. this frequently
results in overfitting of pattern profiles, resulting in poor
generalization capability [11]. Traditional ML algorithms,
such as Cox’s proportional hazard model along with
encouragement vector machines, are frequently used for
forecasting and recognizing cancer [12]. Deep learning
(DL) models and algorithms are currently receiving a lot
of interest from scientists and researchers throughout the
world. DL, a subset on ML, takes advantage of advances
in neural network technology. It functions by incorporating
multiple hidden layers, activation functions, and hyper
parameter tuning to process inputs and generate outputs.
This structure makes DL models more sophisticated and
advanced, offering substantial advantages in classification
tasks. They are very good at handling complex and huge
datasets, outperforming typical predictive models. For the
past few years, DL has contributed to significant advances
in healthcare, particularly in health imaging and cancer
diagnosis.

This paper primarily examines the latest advancements
in ML and DL techniques in classification of cancer. The
increasing availability of healthcare data, along with the
advancement of data analysis tools, has significantly
improved the use of ML and DL in the healthcare
sector [13]. Both ML and DL have made remarkable
progress in addressing various scientific challenges [14].
In medical care, the use of Al serves a major part in
several applications, including data management. Drug
development, disease forecasting, and treatment planning
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[15].

* This research examines mechanical learning as well
as deep neural network models towards cancer subtype
categorization, including their techniques, strengths, and
limitations in processing gene expression data.

« It highlights the role of multi-omics data integration,
including RNA-Seq and ATAC-Seq, to enhance diagnostic
accuracy and subtype classification, while discussing how
these approaches address challenges related to tumor
heterogeneity and complex data patterns.

* The review outlines critical limitations such as
computational demands, generalizability issues, and data
inconsistencies, offering targeted recommendations for
future research, including standardized data protocols,
optimized algorithms, and resource-efficient deployment.

» This paper proposes strategies to improve model
interpretability and scalability for clinical settings,
emphasizing the potential of Al techniques to bridge
gaps in clinical usability and patient-centred diagnostic
outcomes

2. Background of the Study

The research on cancer subtype classification
highlights the revolutionary impact. Of Al and ML in
cancer diagnostics, especially through the analysis of
gene expression data shown in Figure 1 [16]. Traditional
ML models, like support vector machines (SVMs) and
decision trees, initially offered moderate success. DL
models like CNN and RNN have advanced the field
by capturing intricate patterns within complex gene
expression datasets. XAl has made Al-driven predictions
more interpretable for clinicians, addressing transparency
in medical decision-making. However, challenges remain,
such as data heterogeneity, high computational costs, and
model generalizability. Recent research has turned to
strategies like transfer learning, multi-omics integration,
and enhanced data pre-processing techniques for more
robust, scalable, and clinically applicable Al models.

Nethala et al. [17] proposed the Optimal Gene
Therapy Network (OGT-Net), an advanced Al-driven
framework for classifying various types of cancers using
gene expression data. The method integrates dataset
normalization, feature extraction through Light Gradient
Boosting Model (LGBM), and optimal feature selection
using Interrupt-based Harris Hawk Optimization (IHHO)

Feature
Selection
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Reduction to
subset of
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Figure 1. Cancer Classification Model Using Gene
Expression Data
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to remove redundant gene sequences. Subsequently, a
customized DL convolutional neural network (DLCNN) is
employed to categorize cancers including lymphography,
colon, lung, ovarian, and prostate types. Simulation
results demonstrate that OGT-Net outperforms state-
of-the-art approaches, achieving an average accuracy
of 91.13%, precision of 90.84%, recall of 91.25%, and
F1-score of 90.7%, reflecting significant improvements
over existing methods. The framework emphasizes both
performance enhancement and clinical applicability,
highlighting the potential for integration into user-friendly
interfaces for healthcare practitioners. While OGT-Net
shows promise in robust cancer classification, future
research could focus on optimizing model architecture,
improving interpretability, and bridging the gap between
computational advancements and practical clinical
deployment.

Abidalkareem et al. [18] developed a ML-based
framework for identifying stage-specific biomarkers in
breast cancer using dysregulated microRNAs (miRNAs).
Leveraging a dataset of 1097 metastatic tissue samples
from TCGA, the study applied Neighborhood Component
Analysis (NCA) and Minimum Redundancy Maximum
Relevance (MRMR) for feature selection to isolate the
most discriminant up- and down-regulated miRNAs
across the four stages of breast cancer. Both methods
significantly outperformed the conventional fold-
change (FC) approach, with NCA achieving the highest
classification accuracy of 98.3% and MRMR reaching
93.1%. While NCA proved effective in identifying stage-
specific biomarkers, MRMR provided complementary
information by highlighting common biomarkers relevant
across multiple stages. The study underscores the potential
of advanced feature selection in improving diagnostic
precision and facilitating early detection, though a key
limitation remains the inability to incorporate blood
samples, which share similar miRNA profiles in normal
and cancerous tissues.

Babichev et al. [19] investigated the application of
DL architectures for cancer classification using gene
expression data, comparing CNNs, LSTMs, GRUs, and
hybrid models. To optimize performance, the authors
employed Bayesian optimization with 5-fold cross-
validation for hyperparameter tuning and introduced a
hybrid quality criterion, integrating an F1-score through
the Harrington desirability method. Their framework
follows a hierarchical step-by-step processing approach,
where predictions from individual DL models are refined
through a CART-based classifier to enhance decision-
making objectivity. Experimental evaluation on datasets
covering eight cancer types and a normal sample subset
revealed that a two-layer GRU-RNN achieved the
highest performance, with an accuracy of 97.8%. The
study highlights the robustness of GRU-based recurrent
networks for gene expression classification, while
also emphasizing that increasing model complexity
through ensembles may not guarantee superior accuracy.
Nevertheless, the incorporation of hybrid decision-
making mechanisms offers improved interpretability and
reliability.
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Al-Azani et al. [20] addressed two key challenges
in gene expression—based cancer classification: class
imbalance and the curse of dimensionality. The study
applied oversampling techniques, including SMOTE and
its variants, to balance the datasets at the data level, while
ensemble learning was adopted at the algorithmic level
to improve robustness. To reduce dimensionality, chi-
square and information gain methods were first applied
independently, and then combined into a novel hybrid
feature selection approach (CHiS—-IG) to identify the
most informative genes. Among the evaluated models, the
integration of SVM-SMOTE with a random forest (RF)
classifier achieved the best performance, reaching 100%
accuracy in some datasets, surpassing results reported in
prior literature. The findings highlight the effectiveness
of combining oversampling and hybrid feature selection
in mitigating the limitations of high-dimensional,
imbalanced gene expression data.

Khalsan et al [21], created a new fuzzy gene selection
technique (FGS) enhance tumor categorization using
expression of genes data. The approach uses three methods
for selecting features (Mutual Information, F-Classlf, and
Chi-squared) to identify relevant genes while reducing
the dimensionality of the data. The blurring and the
defuzzification methods were used to identify the highest
overall rating for each gene, which assisted in identifying
essential genes. The FGS-enhanced cancer classification
model outperformed the classic MLP method with regard
to of accuracy, precision, recall, and the f1-score. (96.5%,
96.2%, 96%, and 95.9%, respectively). The suggested
model exhibited its ability to accurately classify cancer in
six datasets, indicating its promise in a variety of domains,
including biomedical science. However, the FGS model’s
high computational demands may limit its scalability and
efficiency with large gene expression datasets. The fuzzy
gene selection strategy reduces the curse of dimensionality
by filtering irrelevant genes, thereby improving robustness
in handling high-dimensional expression data.

Joshi et al [22], researched introduces rPAC, a new
pathway analysis paradigm that divides signalling
pathways are divided under two parts: The precursor
component of a transcriptional element blocking includes
downstream section piece that makes up a TF block. The
grading method is then used on a collection on expressed
genetic material data sets, resulting in the following
summary metrics: ‘“Proportion of Significance” (PS) and
“Average Route Score” (ARS). The method’s performance
was evaluated using both simulated data and an actual
investigation comprising three epithelial tumor datasets
using the Cancer Genome Atlas (TCGA). The rPAC
approach highlighted various pathways as potential
forms of cancer endorsements, and it was discovered
to be more effective than standard methods in detecting
illness etiology, especially when distinguishing pathways
and sections of damaged circuits at a greater resolution..
However, the rPAC method’s complexity may hinder its
scalability and adaptability to diverse gene expression
datasets and pathway structures. By decomposing
signaling pathways into modular components, rPAC
captures hierarchical biological relationships, improving
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interpretability of gene expression patterns across different
cancer subtypes.

Nahiduzzaman et al [23] described a new method for
reliably classifying three forms of lung cancer, as well
as normal lung tissue, using CT images. The method
makes use of a compact parallel depth-wise separable
CNN (LPDCNN) with the ridge regress radical training
device. The method improves image quality and
decreases noise by employing contrast-limited adaptive
histogram equalization (CLAHE) and Gaussian blur.
The LPDCNN retrieves discriminant characteristics with
little computational cost. This Ridge-ELM approach
was developed for better the accuracy of classification.
The structure achieves average recall and accuracy values
of 98.25 + 1.031% and 98.40 + 0.822% in four-class
categorization, respectively. It is also extremely efficient,
with testing times of only 0.003 seconds. The system
also includes SHAP (Shapley Additive Explanations)
to improve explain ability and decision-making in real-
world lung cancer. However, the method’s dependence
on specific pre-processing techniques may restrict its
generalizability to diverse imaging conditions and
lung cancer subtypes. The use of depth-wise separable
convolutions significantly reduces computational cost
while preserving discriminative features, making it
more efficient for large-scale imaging and gene-linked
diagnostic tasks.

The article examines recent developments in ML
algorithms for categorized cancer and subtype detection,
focusing on DL frameworks like adversarial networks
and convolutional architectures. These methods enhance
the detection of tumor origins, molecular subtypes, and
gene interaction groups. However, challenges remain in
scalability, computational efficiency, and adaptability
across diverse datasets and cancer types. Addressing
these limitations is essential because moving the models
beyond studies towards clinical use, thereby improving
cancer diagnosis and treatment planning across a variety
of biological and imaging contexts.

3. Review Analysis

The review paper on tumor category classifying
utilizing genetic expression data provides a complete
methodology. That combines ML, explainable Al
classifiers, neural network architectures, and transfer
learning to improve diagnostic accuracy and clinical
relevance. ML techniques effectively analyze complex
gene expression profiles to identify distinct cancer
subtypes, while explainable Al enhances interpretability,
allowing for insights into the biological significance
of predictive markers. Neural network architectures,
particularly DL models, capture intricate biological
interactions and facilitate the identification of subtype-
specific biomarkers the technique of transfer learning uses
models that have been trained to improve classification
performance, particularly in settings with little data.
Moving into the future, subsequent research must
concentrate on integrating multi-omics data to further
refine classification accuracy, enhancing model robustness
against diverse datasets, and developing real-time
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applications for clinical decision-making, ultimately
advancing personalized cancer treatment strategies.

From the comparative review, three cross-cutting gaps
emerge: (i) data-related challenges, such as heterogeneity,
small sample sizes, and lack of standardized protocols;
(i1) model-related challenges, including overfitting,
computational inefficiency, and poor scalability; and (iii)
clinical translation gaps, such as limited interpretability,
lack of cross-institutional validation, and barriers to
clinical adoption. Addressing these gaps requires a
unified approach that combines predictive accuracy,
interpretability, and adaptability.

3.1 ML based on approaches

A ML approach for classifying Tumor types depend
on information on gene expression begins with pre-
processing steps such as normalization and gene filtering
to reduce noise as shown in Figure 2 [24]. Feature
selection methods like t-tests or Recursive Feature
Elimination (RFE) help identify the most relevant genes,
while dimensionality reduction techniques like PCA or
auto encoders reduce the feature space while retaining
critical information. Classification is then performed
using a variety of models, such as SVM, RF, and DL
structures. The efficacy of the model is measured utilizing
metrics such as precision as well as ROC-AUC, with
cross-validation to ensure robustness and generalizability.

Rukhsar et al [25], provided a novel strategy for
dealing with Multidimensional and loud. RNA-Seq
data from the Mendeley repository, with the goal of
retrieving information on five forms of cancer. Eight
DL algorithms are used to pre-process the data, extract
features, and classify the results. CNN outperformed all
other algorithms, and the study classified five tumours
using related genes. Comparative research revealed
that the proposed technique outperformed the existing
literature. However, High computational demands and
risk of overfitting may limit the approach’s scalability
and generalizability for RNA-Seq data.

Sun et al [26], proposed SCM-DNN, to find specific
the simultaneous expression circuits for each molecular
category, enabling for better and more precise predictions
for breast while stomach cancer patients. SCM-DNN
beats standard gene expression-based approaches
across all criteria, even with imbalanced sample sizes.
The discovered genes may represent particular subtype
features and help to improve knowledge about molecular
subtyping processes, potentially driving personalized
therapy. The incorporation of multi-omics data is

’7 Machine learning T
Supervised Unsupervised

’7 learning W learning
Classification

Figure 2. Types of Classification in ML

Regression Clustering
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recognized being a useful technique for studying biological
systems. Despite, A potential limitation of SCM-DNN is
its reliance on high-quality, large-scale multi-omics data,
which not always be available, potentially affecting model
accuracy and generalizability.

Park et al [27], RNA-seq transcriptome and ATAC-
seq epigenetic data integrated to create a system of
classification for cancer of the breast fundamental
categories. It identifies eleven important genes involved
in immunological comments, hormone signalling,
progression of cancer, and cell division. The study
employs bulkRNA-seq and ATAC-seq data to investigate
the connection between the expression of genes and access
to chromatin in cancer of the breast patients. The research
shows that integrating RNA-seq and ATAC-seq data with
ML algorithms may improve the comprehension of the
accessibility of chromatin and the molecular mechanisms
that drive these subtypes. However, a limitation of the
study is the potential bias in the ML model due to the
reliance on bulk RNA-seq and ATAC-seq data, which
not capture the heterogeneity of tumour cell populations.

Babichev et al. [28] proposed a hybrid ML framework
to evaluate proximity metrics for high-dimensional gene
expression data, focusing on their role in clustering and
disease classification. By integrating data mining methods
with ML techniques such as k-medoid clustering, RF ,
Bayesian optimization, and a stacking meta-classifier, the
model achieved high accuracy (>95.9%) across 13 TCGA
cancer types and demonstrated strong generalizability
on Alzheimer’s and Type 2 Diabetes datasets. A key
contribution was the comparative analysis of correlation
distance, mutual information, and Wasserstein metrics,
with correlation and Wasserstein proving highly effective
and interchangeable for clustering and classification.
The stacking model further enhanced robustness against
clustering errors, enabling a scalable and automated
pipeline suitable for precision medicine. This work
highlights how metric-driven hybrid modeling can support
reliable biomarker discovery and early disease diagnostics
from gene expression profiles.

Alanazi et al. [29] proposed an integrative ML
framework for classifying cancer subtypes using RNA-seq
data from BRCA, KIRC, COAD, LUAD, and PRAD.
The approach combined data normalization, feature
selection, dimensionality reduction, clustering (k-means),
and classification, ultimately employing a Wide Neural
Network that achieved remarkably high accuracy
(99.995% on the test set). The method was proposed to
address the limitations of traditional histopathology by
leveraging transcriptomic signatures for more precise and
personalized cancer subtype stratification. The key benefit
lies in its ability to unravel molecular heterogeneity and
improve diagnostic accuracy, paving the way for precision
oncology and tailored therapies. However, the authors note
that the reliance on large, high-quality RNA-seq datasets
poses a limitation, as data biases or noise could reduce
robustness and affect the reliability of clinical applications.

Babichev et al [30], introduced a hybrid inductive
approach to creating uniquely expressed and socially
connected expression patterns using the technique of
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spectral clustering. The model proved to be insufficient
for internal as well as external quality standards, leading
the creation of a balancing clustering quality criterion. The
best cluster structures were discovered to be four and six
cluster configurations. The algorithm’s appropriateness
has been evaluated using a classifier on gene expression
datasets. The method of RF as the CNN were utilized to
handle binary classification and multiclass identification
issues. However, the model’s reliance on specific clustering
configurations may limit flexibility in identifying gene
expression patterns across diverse datasets.

Liu et al [31], proposed ML-based method has been
developed to generate a consensus immune-related
IncRNA signature (IRLS), this constitutes an individual
contributor to risk for survival in general. IRLS provides
consistent results but has a modest value in predicting
for relapse-free survival. It can be more accurate with
conventional diagnostic and molecular features. The group
with a higher risk is more susceptible to fluorouracil-
based chemotherapy, whereas the group with a low risk
benefits better from bevacizumab. IRLS may improve
medical results among particular patients suffering from
CRC. However, the low estimated value for relapse-free
mortality may limit the signature’s overall utility in clinical
decision-making.

Mohamed et al [32], researched developed a
hybrid approach to cancer of the breast. Identification
and diagnosis that integrates the Ebola optimization
search algorithm (EOSA) Using a CNN design that
utilizes expression of genes data. The data was pre-
processed using a variety of approaches, including outlier
removal, normalization, filtering, and conversion to
two-dimensional pictures. The previously EOSA-CNN
technique was used in categorization. The predictive
model performed better than the malignant category
with respect to of accuracy, precision, recall, f1-score,
kappa, preciseness, and sensitivity. The findings suggest
that the model may accurately and consistently diagnose
breast cancer utilizing genetic expression data. Future
improvements will address unbalanced data and integrate
the model with new optimization algorithms. However,
the model’s performance may be compromised by the
challenges of handling imbalanced data, which could
affect classification accuracy.

Sarkar et al [33], proposes a genetic algorithm and
SVM (GA-SVM) breast cancer classification model that
employs a combination of ML methodologies. Using
clinical pathology data from numerous tertiary care
hospitals, the model differentiates between those suffering
from a triple-negative and non-triple-negative breast
disease. Whenever utilized with two independent medical
facilities datasets from the North West Africa peninsula,
the model outperformed the other models. A ten-fold
cross-validation handle was employed to guarantee that
the framework utilized for prediction accuracy remained
consistent across all models. The model’s efficacy was
assessed using measures such as average square mistake,
logarithm loss, F1 value, ROC curve, and precision-recall
graph. However, the model’s reliance on specific clinical
pathological data may limit its generalizability across
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different populations and cancer types.

Senbagamalar and Logeswari [34] addressed the
challenge of multiclass cancer classification using gene
expression data by proposing a genetic clustering algorithm
(GCA) for optimal feature selection and a divergent RF
(DF) classifier. Their approach reduced 1621 gene features
to just 21 highly informative ones, enabling efficient
classification of five cancer types: breast, colon, kidney,
lung, and prostate cancer. The proposed GCA-DF model
achieved 95.21% accuracy, 93% specificity, and 94.29%
sensitivity, outperforming conventional classifiers. By
combining clustering-based feature reduction with an
ensemble classifier, the study highlighted the importance
of compact yet discriminative gene subsets in improving
diagnostic accuracy. The authors further suggested
incorporating metaheuristic optimization strategies in the
future to refine gene expression selection and enhance
computational efficiency in large-scale cancer diagnostics
(Table 1).

Recent advances in cancer research have used
ML approaches to increase diagnostic and prognosis
accuracy. Techniques such as RNA-Seq data processing
and SCM-DNN models have improved cancer subtype
prediction and noise reduction, but they have computational
and generalizability limitations. Combining RNA-Seq and
ATAC-Seq data improves comprehension of chromatin
accessibility, but it may neglect tumour heterogeneity.
Models such as AWCA and LGDLDA are highly
concordant with existing classification standards, but their
applicability to varied populations remains a challenge.
The Consensus Immune-Related IncRNA Signature
(IRLS) has improved colorectal cancer prognosis, while
approaches such as EOSA and GA-SVM show promise
in breast cancer diagnosis. The Knowledge- and Context-
Driven ML (KCML) paradigm demonstrates the power of
ML in large-scale genetic studies.

3.2 Explainable Al Classifier based on approaches
Explainable AI (XAI) classifiers are used to categorize
Tumor classifications based on expression of genes
information. As shown in Figure 3 [35]. These classifiers
increase interpretability and predictive performance,
allowing researchers and clinicians to better understand the
decision-making process involved in categorization. XAl
classifiers use techniques Examples include decision tree

Application of XAI
in healtheare

Basic
Biomedical
Research

Figure 3. Application of XAl in Healthcare
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structures, randomly generated forests, and SVM, among
others.to highlight essential features and interactions in
gene expression data, confirming predictions and building
trust among medical practitioners. This transparency
helps to uncover biomarkers linked with various subtypes
and facilitates individualized treatment regimens, which
ultimately improves patient outcomes. However, obstacles
like as data quality, dimensionality, and biological system
complexity persist, demanding additional study for greater
clinical application.

Wani et al [36], introduced “DeepXplainer,” a hybrid
DL system that detects lung cancer and explains forecasts.
It makes use of a CNN and XGBoost to predict class labels.
The technique uses an understandable computational
intelligence method known as “SHAP” to provide
explanations. This algorithm was used to process the
freely available “Survey Lung Cancer” information and
exceeded previous methods with respect to of precision,
responsiveness, and F1 score. The model had 97.43%
accuracy, 98.71% sensitivity, and an F1-score of 98.08.
Each forecast is provided using an intelligible Al method
on both a local and global level. Data diversity across
different lung cancer subtypes and patient populations
may provide a challenge.

Li et al [37], proposed a new framework (CGMega)
has been created to analyze cancer gene modules using
explainable graph attention. The system uses a multi-
omics representation chart, with vertices representing
genomes and lines denoting interactions between proteins.
It detects cancer-related genes using a transformer-based
graph attention neural network within a semi-supervised
setting. Further outstanding performance of CGMega
enables the subsequent detection of cancer gene modules.
GNNExplainer40 is a model-agnostic method for
understanding contributing variables to cancer genes in
a multi-omics setting. CGMega was tested on cancerous
breast cell lines and AML patients, finding high-order
linkages among gene in disease genetic networks.
However, May face limitations in generalizability across
diverse cancer types and multi-omics datasets.

Abhang and Gunjal [38] proposed a Deep Graph
Ensemble CNN (G-ECN) for drug response prediction
using multi-omics cancer cell line data from the GDSC2
dataset. The model integrates graph-based multi-scale
feature representation with transfer learning from gene
ontology knowledge to capture critical gene—drug
interactions, addressing the challenge of accurately
distinguishing “sensitive” and “resistant” drug responses.
This approach was proposed to improve personalized
cancer therapy by leveraging structural and genomic
features beyond traditional models. The main benefits
include higher predictive accuracy, strong generalizability
across datasets (validated on CCLE), and explainable
outputs aligned with biological knowledge, making it
useful for precision oncology. However, the method relies
heavily on high-quality multi-omics data and remains
computationally expensive, which may limit scalability
in clinical settings.

Sekaran et al [39], described OPSCC is an unpredictable
disease having a poor prognosis. That significant medical
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Table 1. Comparison of Literature Done in ML Based on Approaches
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Author/Reference Technique

Significance

Limitation

Rukhsar et al [25] RNA-Seq data

Sun et al [26] SCM-DNN

Park et al [27] RNA-seq transcriptome and
ATAC-seq epigenetic data

Babichev et al. [28] Hybrid ML framework with proximity metrics
(k-medoid clustering, Random Forest,
Bayesian optimization)

Alanazi et al. [29] Integrative ML pipeline with normalization,
feature selection, dimensionality reduction,
clustering (k-means), and Wide Neural Network

Babichev et al [30]  Hybrid inductive model

Liuetal [31] Consensus IRLS

Mohamed et al [32] EOSA

Sarkar et al [33] GA-SVM

Senbagamalar & GCA + DF
Logeswari [34]

- Reduces noise in RNA-Seq data
- Enabling accurate cancer
classification.

- Enhances cancer
subtype prediction
- Supporting personalized therapies.

- Enhances understanding of
chromatin accessibility

- Facilitating improved
classification of intrinsic subtypes.

- Achieved >95.9% accuracy
across 13 TCGA cancers.

- Demonstrated strong
generalizability to Alzheimer’s
and Type 2 Diabetes.

- Achieved exceptionally

high accuracy (99.995%)

on RNA-seq cancer subtype data.
- Addressed histopathology 1
imitations by leveraging
transcriptomic signatures.

- Enhances the identification of
distinct gene expression profiles
- More accurate classification in
gene expression analysis.

- Enhances prognostic accuracy
for colorectal cancer
- Improve patient outcomes

- Improves lung cancer identification
with genetic activity information.

- GA-SVM model enhances breast
cancer classification accuracy

- Reduced 1621 genes to 21
discriminative features.

- Achieved 95.21% accuracy, 93%
specificity, and 94.29% sensitivity.

High computational demands and risk
of overfitting may limit the approach's
scalability and generalizability for
RNA-Seq data.

Potentially affecting model accuracy
and generalizability.

Which not capture the heterogeneity of
tumour cell populations.

Relies heavily on metric selection;
performance may vary with dataset
characteristics and metric suitability.

Requires large, high-quality RNA-seq
datasets; data noise or bias can reduce
robustness and clinical applicability.

Limit flexibility in identifying gene
expression patterns across diverse
datasets.

Limit the signature's overall utility
in clinical decision-making.

Model performance may be
compromised by the challenges of
handling imbalanced data

Limit its generalizability across
different populations and cancer types.

Future improvement needed via
metaheuristic optimization for better
scalability and computational efficiency.

conditions along with elevated recurrence rates are
connected to current therapies. Highlight the importance of
advancing diagnostic techniques in OPSCC. Researching
biomarkers that are especially those that may be gathered
without intrusive procedures, has the potential to alter
patient care methods. The current study used a genomic
approach to uncover oncogenic factors involved in the
development of OPSCC. Combining informatics studies
and ML methodologies with a detailed examination the
RNAseq information resulted in the discovery of ECT2,
LAMC2, and DSG2 as potential molecular markers
for OPSCC. The study’s findings may help improve
the survival rates of OPSCC patients. The findings and
technique of this study could be used to clinical and
experimental settings in future research. However, the
findings may lack generalizability due to potential biases
in the RNA-seq datasets used for analysis.

Morabito et al [40], the article presents the DeepSHAP
Auto encoder Filter for Gene Selection (DSAF-GS), a new
DL and XAl-based FS approach for genomics-scale data
analysis. The technique uses AEs to select those that are
most useful genes while retaining the initial characteristic
time, boosting the explain ability of results and using AEs’
representation capabilities. Gene selection is used to build

and train diagnostic or prognostic prediction models. The
Shapely Additive Ex-Planation (SHAP) XAl technique is
then used to examine the model findings and determine the
genes that are most related to the condition. A systematic
population of newly identified Bi net stage A CLL patients
was studied using the XAI approach to discover markers
which levels of expression predict the need for medication.
Despite, May have limited scalability with large, complex
genomic datasets due to computational demands.

Yang et al. [41] introduced MHGCN, a Multi-channel
Hybrid Graph CNN, for cancer drug response prediction
by explicitly modeling the topological relationships of
cell line—drug pairs (CDPs). The framework integrates
gene expression data and drug molecular fingerprints,
refines CDPs with denoising autoencoders, and builds
both a similarity network (via cosine similarity) and a
heterogeneous response graph. MHGCN jointly learns
from these graphs using graph convolutional layers and
fuses embeddings through a weighted matrix projection
to generate predictions. This model was proposed to
overcome the limitation of prior methods that ignored
intrinsic CDP connections. The main advantage lies in
its improved predictive accuracy and ability to capture
complex biological interactions, making it valuable for
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Table 2. Comparison of Literature Done in Explainable Al Classifier based on Approaches

Author/Reference Technique Significance Limitation

Wani et al [36] DeepXplainer - Improves lung cancer prediction accuracy Limitations in handling data variability across diverse
with clear, interpretable explanations. lung cancer subtypes and patient populations.

Lietal [37] CGMega - Enhances detection of cancer gene modules Faced limitations in generalizability across diverse

cancer types and multi-omics datasets.

Abhang & G-ECN - Improves drug response prediction with high ~ Requires high-quality data; computationally expensive.

Gunjal [38] accuracy and biological interpretability.

Sekaran et al [39] OPSCC - It aims to improve patient outcomes and Lack generalizability due to potential biases in the
survival rates through early detection and RNA-seq datasets used for analysis.
targeted therapies.

Morabito et al [40] DeepSHAP - enhances diagnostic and prognostic gene Limited scalability with large, complex genomic
selection accuracy datasets due to computational demands.

Yang et al. [41] MHGCN - Captures complex CDP interactions and Dependent on dataset quality; high computational cost.
enhances predictive accuracy.

Gutierrez-Chakraborty ~ XAI framework - Demonstrating high predictive and Framework's applicability may be limited by its focus

et al [42] therapeutic relevance
Abuzinadah Predictive model - Enhances cancer prediction reliability
et al [43] - Achieving 96.87% accuracy

Altini et al [44] CAD

- Improves breast tumour assessment by
combining accuracy with interpretability

on a specific demographic

Leads its generalizability to other cancer types or
diverse data sources.

Model may limit its effectiveness across varied clinical
scenarios.

- SHAP-based analysis enhances understanding

of model decisions

Rajpal et al [45] XAI-CNVMarker

- Al-powered platform for identifying
interpretable biomarkers in breast cancer.
- The model had a classification accuracy of

Reliance on specific datasets for validation could
restrict the generalizability of the identified biomarkers
across diverse patient populations.

0.712 with a 95% confidence interval.

personalized therapy. However, its performance depends
on the quality and completeness of high-throughput
datasets, and the computational cost of multi-channel
graph learning may restrict scalability in real-world
clinical environments.

Gutierrez-Chakraborty et al [42], researched an XAI
framework for artificial intelligence methodology for
finding and validating essential genetic indicators for HCC
prediction. The technique involves evaluating medical and
data on gene expression to discover possible biomarkers
with predictive value. The research employs advanced
artificial intelligence algorithms that have been established
against large genetic expression datasets, proving the
biomarkers’ accuracy in predicting and therapeutic utility.
Key biomarkers such as TOP3B, SSBP3, and COX7A2L
have been shown to be influential in many models,
increasing HCC prognosis beyond AFP. These biomarkers
are also relevant to the Hispanic community, which is
consistent with the overall purpose of demographic-
specific research. However, the framework’s applicability
may be limited by its focus on a specific demographic,
potentially hindering generalizability to other populations.

Abuzinadah et al [43], proposed predictive model
employs a stacking ensemble approach that combines
the advantages objective both boosting and bagging
classifiers, with the objective of increasing prediction
accuracy and reliability. This combination minimizes
variation while improving generality, yielding better
cancer forecasting findings. The suggested approach
achieves 96.87% accuracy, this represents the greatest
performance of the model recorded on this set of data
to date when every attribute are considered. The data is
evaluated with SHAPly, which is an explainable artificial
intelligence technique. When contrasted with other

cutting-edge models, the suggested model outperforms
them. Despite, the model may face limitations in
scalability and adaptability when applied to different
datasets or cancer types, potentially impacting its broader
applicability.

Altini et al [44], created an explainable computer-aided
diagnosis (CAD) system to help pathologists assess
tumour cellularity in breast histopathology slides. The
system compared an end-to-end DL technique that used
a Mask R-CNN segmentation instance architecture to a
two-stage procedure that extracts features based on the
morphology and textured properties of cell nuclei. SVM
algorithms and ANN are used to develop classifiers
that can differentiate among neoplastic and non-tumor
nuclei. Overall SHAP explainable artificial intelligence
method has been applied to evaluate feature significance,
providing a clearer understanding of the judgments made
by ML models. An experienced pathologist validated
the model to ensure its clinical usefulness. However,
two-stage pipeline models are substantially less precise,
they are easier to interpret, which may increase confidence
in using Al-based CAD systems in clinical processes.
However, The CAD system’s reduced accuracy in the
two-stage model may limit its effectiveness across varied
clinical scenarios.

Rajpal et al [45], researched XAI-CNVMarker,
an Al-powered platform for identifying interpretable
biomarkers in breast cancer. The approach use DL to
create a classification model, which is then examined using
explainable Al techniques to find 44 CNV biomarkers.
The model had a classification accuracy of 0.712 with
a 95% confidence interval. The biomarkers were also
validated using METABRIC, illustrating the significance
oftransparent artificial intelligence in identifying practical
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indicators. However, reliance on specific datasets for
validation could restrict the generalizability of the
identified biomarkers across diverse patient populations
(Table 2).

Recent developments in cancer diagnosis have used Al
and DL to improve forecast accuracy and interpretability.
DeepXplainer and CGMega are models that improve lung
cancer forecasts, but their generalizability across cancer
types is limited. Deep GONet is highly accurate across
gene expression datasets, although it suffers with novel
gene connections. The OPSCC model tries to improve
patient outcomes by early identification, however it may
be influenced by RNA-seq data. DeepSHAP enhances
gene selection accuracy but has scalability issues with
huge datasets. PathDeep improves cancer biology
understanding for tailored medicines, however it may
struggle with limited data. The XAI methodology has
strong predictive value, however it may not generalize
well to different cancer types.

3.3 Neural network based on approaches

Neural networks have emerged as powerful tools for
cancer subtype classification due to their ability to model
complex, non-linear relationships in high-dimensional
gene expression data. CNNs are particularly effective at
extracting local co-expression patterns among groups of
genes, while recurrent neural networks (RNNs) capture
sequential dependencies in gene regulatory pathways.
Autoencoders and deep embedding frameworks reduce
dimensionality and denoise input data, enabling the
extraction of biologically meaningful features from sparse
datasets. More recently, attention-based mechanisms
have further improved interpretability by highlighting
the most informative genes or pathways, making
predictions more clinically transparent. Together, these
architectural innovations mitigate key challenges in gene
expression analysis, such as high dimensionality, sparsity,
heterogeneity, and lack of interpretability, while enhancing
robustness and classification performance. Neural network
designs are being used to categorize Using gene expression
data to determine cancer subtypes, enhancing diagnostic
accuracy and personalizing treatment regimens. These
architectures, such as convolutional and RNN, extract
significant Information underlying protein expression
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profiles enable the differentiation between cancer
subtypes. Attention mechanisms and transfer learning
procedures improve model interpretability by identifying
key genes linked with distinct subtypes. Overall, this
paradigm illustrates neural networks’ potential to advance
precision oncology by robustly classifying cancer
Subtypes employing transcript expression information,
as seen in the Figure 4 [46].

Liu et al. [47] conducted a comprehensive
bioinformatics study using artificial neural networks
(ANNS) to identify characteristic genes associated with
cervical cancer (CC). By analyzing RNA sequencing
data from multiple GEO datasets, the study identified
differentially expressed genes (DEGs) between normal
and cancerous cervical tissues. The authors applied
random-forest filtering and established a neural network
model using these characteristic genes, with Cox
regression employed to verify the predictive accuracy.
The proposed approach offers several benefits, including
robust prediction of CC, insights into molecular
mechanisms, identification of potential biomarkers, and
guidance for immunotherapeutic interventions. However,
limitations include the reliance on public datasets without
experimental validation, incomplete understanding of
viral and tumor immune escape mechanisms, and the need
to consider epigenetic and immune regulatory factors,
highlighting the necessity for further studies to validate
and expand these findings.

Ren et al. [48] proposed a Multi-view Graph
Neural Network (MVGNN) to classify breast cancer
differentiation and subtypes by integrating multi-omics
data (gene expression, DNA methylation, and CNV).
The framework constructs weighted patient similarity
networks for each omics type, applies Graph Convolutional
Networks (GCN) to learn features, and employs an
attention mechanism to fuse multi-omics representations.
This model was designed to overcome the limitations of
single-omics and traditional ML methods that often bias
predictions toward one data type. Experimental validation
on TCGA datasets demonstrated that MVGNN achieved
superior performance in both binary and multi-class
breast cancer classification compared to baseline models.
The main benefits include robust multi-omics integration
and improved accuracy, but its reliance on extensive
preprocessing and the complexity of heterogeneous data
fusion pose challenges for clinical adoption and scalability.

Zhou et al [49], The Nottingham Prognostics Index
(NPI) is a prognostic metric designed for predicting
mortality in treatable basic cancer of the breast. With
advances in next-generation sequencing, multi-omics data
collection allows for the examination of a wide range of
physiological measurements to gain a better knowledge of
disease progression. This work sought to find multi-omics
indicators linked to breast cancer prognosis and survival,
as well as to create a prediction model for several NPI
classes. The suggested model performed exceptionally
well, with an accuracy of 98.48% and an area under
the curve (AUC) of 0.9999. The findings demonstrate
substantial connections between the collected omics data
and breast cancer prognosis and survival, highlighting
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Table 3. Comparison of Literature Done in Neural Network Based on Approaches

Author/
Reference

Technique

Significance

Limitation

Liu et al. [47]

Ren et al. [48]

Zhou et al [49]

Yin et al [50]

Choi et al [51]

Allogmani
etal. [52]

Amin
etal. [53]

Kesimoglu
et al [54]

Guo et al [55]

Geeitha
et al. [56]

ANN with RF filtering

MVGNN

High-dimensional
embedding

Multi-omics graph
convolutional network
(M-GCN)

moBRCA-net

CPLDC-AOATL combining
bilateral filtering,
Inception-ResNetv2,

and BiLSTM

Multimodal DL with CNNs

SUPREME

BCDForest DL model

Bi-RNN with HSIC
and ensemble ML classifiers

Identifies characteristic genes of cervical cancer,
provides robust prediction, insights into molecular
mechanisms, biomarker discovery, and guidance for
immunotherapy.

Robust integration of multi-omics data; improved
breast cancer classification.

Reduces dimensionality by embedding multi-omics
features into a compact space, enabling

the discovery of survival biomarkers and improving
breast tumor prediction.

Captures complex biological interactions by
modeling gene—gene relationships within graph
structures, enhancing molecular subtyping accuracy
through integrated multi-omics learning.

Combines DLwith self-attention to prioritize
biologically significant features, improving
prediction accuracy and supporting targeted
treatment design.

Provides rapid, automated, and highly accurate
detection of cervical precancerous lesions from
medical images; aids early diagnosis and treatment
with 99.53% accuracy.

High accuracy in NSCLC classification using
RNA-seq, miRNA-seq, and WSIs.

Employs a hybrid DL pipeline that enhances
subtype prediction accuracy by integrating multiple
omics signals into a unified model.

Designed to work with small-scale biological
datasets by combining ensemble methods with DL,
reducing overfitting and improving generalizability.

Predicts cervical cancer recurrence and survival,
enables early risk stratification, biomarker
identification, and preventive interventions.

Relies on public datasets without experimental
validation; incomplete understanding of viral/
tumor immune escape; epigenetic and immune
regulatory factors not fully considered.

Requires extensive preprocessing; complex for
clinical use.

Dependence on multi-omics data limits
applicability to less comprehensive datasets.

Computationally intensive due to integration of
high-dimensional multi-omics data.

Limited performance with incomplete datasets,
while self-attention increases computational
demands.

Relies on specific pre-trained models and
datasets; requires incorporation of multi-modal
data and improved interpretability for clinical
adoption.

Limited to selected modalities; generalization
across cancers is challenging.

Relies on availability of comprehensive
datasets.

May underperform when applied to datasets
with very different structures.

Dependent on retrospective datasets; requires
real-time clinical validation; integration with
additional genomic/clinical data needed for

broader applicability.

biomarkers such as CDCAS, IL17RB, MUC2, NOD2,
and NXPH4 in the gene expression dataset. Along with
MED30, RAD21, EIF3H, and EIF3E from the copy
number data. However, the reliance on multi-omics data
may limit applicability to less comprehensive datasets,
and high-dimensional analysis can increase complexity,
risking overfitting.

Yin et al [50], proposed multi-omics graph
convolutional network (M-GCN) is a new molecular
subtyping system that uses robust graph convolutional
networks to incorporate multi-omics data. To choose
transcriptome features linked with molecular subtypes,
the framework uses the Hilbert-Schmidt independence
criterion of least absolute shrinkage and selection operator
(HSIC Lasso). It then generates multi-view representations
of samples using gene expression, single nucleotide
variants (SNV), and copy number variation (CNV) data.
The M-GCN model surpasses existing techniques for
classifying breast and stomach cancers, and its identified
subtype-specific biomarkers correspond to clinical
knowledge, meaning accurate diagnosis and targeted
treatment development. However, the reliance on graph
structures may limit the model’s ability to capture complex
biological interactions, while integrating multi-omics data
can increase computational complexity.

Choi et al [51], presented moBRCA-net, DL- Cancer

of the breast category identification framework utilizing
multi-omics information. It takes into account biological
interactions when combining data on expression of genes,
DNA methylation, and microRNA expression. Each
dataset is processed by a self-attention module, which
determines the significance of each feature. The features
are translated into new representations, which enable
moBRCA-net to predict subtypes. Despite, The model’s
dependence on multi-omics data may limit applicability
with incomplete datasets, and self-attention increases
computational demands.

Allogmani et al. [52] proposed an enhanced method
for detecting and classifying cervical precancerous
lesions using the Archimedes Optimization Algorithm
with Transfer Learning (CPLDC-AOATL). The approach
integrates bilateral filtering for image denoising, Inception-
ResNetv2 for feature extraction, AOA for hyperparameter
tuning, and a BILSTM model for classification. Tested
on benchmark medical image datasets, the CPLDC-
AOATL method achieved a high accuracy of 99.53%,
outperforming existing techniques. The benefits include
rapid, automated, and highly accurate detection of cervical
cancer from images, aiding early diagnosis and treatment.
Limitations include reliance on specific pre-trained models
and datasets, with future work needed to incorporate multi-
modal data and improve interpretability for clinical use.
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Table 4. Comparison of Literature Done in Transfer Learning based on Approaches

Author/Reference  Technique Significance Limitation
Tabassum Dimensionality reduction and XAI with - Accurately classifies 33 cancer types, Dependent on pre-processed gene
et al. [58] ensemble classifiers identifies biologically meaningful expression datasets; requires clinical
(Logistic Regression, SVM, XGBoost) on  biomarkers. validation for real-world applicability.
mRNA gene expression data - Reduces computational cost, and
enables personalized treatment.
Franchini Single-cell gene set enrichment analysis - Enhances single-cell analysis by Require extensive computational resources
etal [59] (scGSEA) and single-cell mapper accurately identifying gene activity for high-dimensional single-cell data
(scMAP) patterns analysis.
-Aids in mapping novel cell profiles,
improving cancer research insights.
Ming DCE-MRI - Enhances predictive accuracy for HR  Potentially affecting comprehensive subtype
et al [60] status and PAM50 molecular. classification.
- Provides a gene expression-based
approach
Pan Trans-PtLR (Robust Transfer Learning - Improves prediction accuracy in gene Computationally intensive; performance
etal. [61] with t-distributed errors) expression by handling outliers and depends on source dataset quality.
heavy-tailed data.
Samee (GN-AlexNet) - Demonstrates significant Limit its deployment in
etal [62] improvements in accuracy resource-constrained environments or for
- Enhance feature extraction and real-time applications.
classification performance.
Muhammad DRNet - Enhances accessibility for healthcare Require retraining on diverse datasets to
et al [63] professionals maintain diagnostic accuracy across varied
- Supporting early diagnosis and breast cancer subtypes.
intervention.
Zhang T-GEM providing insights into biological T-GEM have limitations in handling
et al [64] functions and potential biomarkers large-scale gene expression data with
- Supporting targeted cancer research complex interactions, potentially impacting
and diagnostics. its scalability for diverse cancer types.
Wang Graph-based deep - Highlighting its enhanced analytical ~With high-dimensional noise in diverse
et al [65] embedding clustering (GDEC) capability scRNA-seq datasets.
- Improvements in clustering accuracy
Attallah CerCan-Net - CerCan'Net achieves high accuracy Face limitations in generalizability across
et al [66] for cervical cancer diagnosis diverse cervical cancer subtypes and varied
dataset conditions.
Srikantamurthy hybrid CNN-LSTM model - Cancer subtype differentiation in Limited generalizability across diverse
etal [67] diagnostic applications. histopathology datasets due to variability

-Achieves high accuracy in breast
cancer histopathology classification,

in imaging conditions

Amin et al. [53] introduced a multimodal DL
framework for non-small cell lung cancer (NSCLC)
classification, integrating RNA-seq, miRNA-seq, and
whole-slide images (WSIs). Unlike earlier approaches that
either used traditional ML on molecular data or single-
modality deep learning, this study leveraged CNNs across
multiple modalities. Experimental results demonstrated
high classification performance, with accuracies of 96.79%
(RNA-seq), 98.59% (miRNA-seq), and 89.73% (WSIs),
alongside strong F1-scores and AUC values, surpassing
prior state-of-the-art results. The study highlights CNNs’
capability to handle high-dimensional omics data and
large-scale pathology images, enabling early-stage
cancer detection and precise subtype classification. While
results are promising, challenges remain in extending the
approach to additional modalities (e.g., DNA methylation,
CNV) and generalizing across different cancer types.

Kesimoglu et al [54], proposed SUPREME is a
subtype prediction technology created by analysing
multiomics data and patient relationships using network
convolutions on different patient matching matrices.
It creates patient embedding based on all multiomics
features and incorporates all potential combinations

to capture complimentary signals. The strategy beat
previous integrated cancer prediction tools and baseline
methodologies across three datasets from The Cancer
Genome Atlas (TCGA) and the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC).
SUPREME-inferred subtypes had considerably
greater survival rates compared to nine cancer subtype
differentiating tools and baseline techniques. The findings
show that, with the correct combination of datatypes and
patient relationships, SUPREME can identify hidden
properties in tumor subgroups that generate substantial
mortality variations and enhance the fundamental reality
identify that is mostly based on an individual datatype.
However, the model’s reliance on multiomics data may
restrict its utility in situations when such extensive datasets
are absent.

Basaad et al. [55] suggested GraphX-Net, a Shapley
Value-based Graph Neural Network (GNN) framework
for predicting breast cancer relapse. The model applies
graph convolutional layers to learn node embeddings and
uniquely integrates Shapley values to quantify feature
contributions, manage node thresholds, and capture
neighboring effects, thereby improving interpretability

Asian Pacific Journal of Cancer Biology* Vol 10 Issue 4 1053



apjcb.waocp.com

alongside prediction accuracy. Through this combination,
GraphX-Net forms distinct patient clusters and offers
transparent insights into risk factors influencing relapse,
bridging the gap between accuracy and explainability.
Experimental evaluation on the METABRIC cohort
confirmed state-of-the-art performance, while also
enabling visualization of graph connectivity and feature
importance.

Geeitha et al. [56] developed a bidirectional recurrent
neural network (Bi-RNN) model to predict cervical
cancer recurrence and patient survival by integrating
clinical risk factors and IncRNA gene signatures. Clinical
features were analyzed using Random Forest, Logistic
Regression, Gradient Boosting, and SVM, with Random
Forest achieving 91.2% precision. The Hilbert-Schmidt
Independence Criterion (HSIC) linked IncRNA signatures
with protein-coding genes to identify biomarkers
associated with recurrence. The Bi-RNN model effectively
predicted recurrence and survival, enabling early
risk stratification and targeted interventions. Benefits
include accurate prognosis, biomarker discovery, and
preventive guidance, while limitations involve reliance on
retrospective datasets and the need for real-time clinical
validation (Table 3).

Recent research demonstrates that neural network
architectures provide complementary strategies to
address the intrinsic challenges of gene expression data
in cancer diagnostics. Convolutional models, such as
bio-inspired CNNSs, effectively capture local co-expression
patterns while reducing noise. Self-explainable
frameworks like Deep GONet enhance interpretability
by linking gene features to phenotypes. Embedding and
graph-based approaches, including high-dimensional
embeddings and M-GCN, reduce dimensionality
and model complex gene—gene interactions across
multi-omics inputs. Optimization-driven RNNs capture
sequential dependencies in regulatory pathways, while
attention-based networks such as moBRCA-net highlight
biologically significant features, bridging predictive
performance with clinical interpretability. Ensemble and
hybrid methods (e.g., BCDForest, SUPREME) improve
robustness, particularly for small or heterogeneous
datasets. Taken together, these advances underscore how
neural networks are not only improving accuracy but also
tackling key issues of dimensionality, heterogeneity, and
clinical usability, positioning them as critical tools for
next-generation cancer subtype classification.

3.4 Transfer learning based on approaches

A transfer of ownership method of learning for
tumor subtype categorization using expression of genes
information uses pre-trained models to improve subtype
identification accuracy and efficiency [57]. Using
knowledge obtained from large datasets, this strategy
successfully adapts existing models to new, perhaps
smaller or more specific gene expression datasets,
allowing for enhanced classification performance with
less training data. The system includes approaches such
as fine-tuning and feature extraction, allowing the model
to capture significant biological signals while overcoming
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the obstacles of overfitting and data sparsity. This strategy
not only speeds up the model training process, but it also
improves generalizability across many cancer types,
thereby helping precision medicine initiatives by allowing
for accurate and quick cancer subtype classification as
shown in Figure 5.

Tabassum et al. [58] proposed a precision cancer
classification framework using mRNA gene expression
data, combining dimensionality reduction, feature
selection, and Explainable Al (XAI) techniques. The
pipeline reduces the original 19,238-gene dataset to 500
key features while retaining critical information, and
employs an ensemble of Logistic Regression, SVM,
and XGBoost classifiers to achieve 96.61% accuracy
across 33 cancer types. Explainable Al, via SHAP scores,
identifies and prioritizes cancer-specific biomarker
genes, validated against Differential Gene Expression
(DGE) analysis. The benefits include accurate, rapid
cancer classification, reduced computational cost, and
identification of biologically meaningful biomarkers
for personalized treatment. Limitations involve reliance
on preprocessed gene expression datasets and the need
for clinical validation to confirm biomarker utility in
real-world scenarios.

Franchini et al [59], Researchers have created two
novel approaches for studying single-cell gene set
enrichment analysis (scGSEA) and single-cell mapper
(scMAP). ScGSEA detects coordinated gene activity at the
single-cell level using latent data representations and gene
set enrichments, whereas sScMAP uses transfer learning
techniques to repurpose and situate freshly created cells
into the standard cell the atlas database. Both approaches
can accurately duplicate repeating patterns of pathway
activation exhibited by cells under multiple experimental
conditions, as well as place and contextual novel a single-
cell characteristics on the breast tumor map. May, require
extensive computational resources for high-dimensional
single-cell data analysis.

Ming et al [60], researched DCE-MRI technology
Using tumor and peri-tumor region slice images, Al
models can predict HR status and PAMS50 molecular
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subtypes of breast cancer. Inception-v3 with Exception
systems performed better overall, although there was little
variation in ER status or PAMS50 classes. Comparisons
with previous studies revealed that the majority of current
investigations predict IHC-based molecular subtypes, but
our algorithms predicted gene expression-based chemical
types, notably PAMS0 fundamental types, providing a
better knowledge of illness characteristics. The models
were compared to previous radionics papers. However,
Limited in differentiating ER status and specific PAMS50
subtypes, potentially affecting comprehensive subtype
classification.

Pan et al. [61] introduced a robust transfer learning
framework (Trans-PtLR) for integrating multi-source
gene expression data under high-dimensional linear
regression. Unlike traditional approaches that assume
normal error distribution, Trans-PtLR incorporates
t-distributed errors, enabling robustness against outliers
and heavy-tailed data, which are common in genomic
datasets. Their three-step algorithm combines penalized
maximum likelihood estimation with transferable source
selection, effectively preventing negative transfer. Applied
to GTEx datasets, the model demonstrated superior
accuracy in predicting gene expression (e.g., JAM2 gene
across multiple brain tissues) compared to conventional
transfer learning methods. This advancement highlights
the potential of robust transfer learning in capturing
complex gene regulatory patterns, thereby supporting
improved prediction in gene-expression—based cancer
subtype analysis.

Samee et al [62], investigated a hybrid deep transfer
learning (GN-AlexNet) model for BT tri-classification
(pituitary, meningioma, and glioma). The proposed
solution combines GoogleNet architecture with the
AlexNet model, removing GoogleNet’s five layers and
adding ten layers from the AlexNet model to automatically
extract and classify attributes. On the same CE-MRI
dataset, the proposed model was compared to transfer
learning techniques (VGG-16, AlexNet, SqeezNet,
ResNet, and MobileNet-V2) and ML/DL. The proposed
model outperformed current strategies in terms of both
accuracy and sensitivity (99.51 percent and 98.90 percent,
respectively).However, the model’s complexity may limit
its deployment in resource-constrained environments or
for real-time applications.

Muhammad et al [63], described a new deep feature
extraction DRNet model for detecting Identification of
breast cancer subtypes using the Breakhis data. The model
uses a transfer learning technique, which relies on trained
multilayer artificial neural networks that have little storage
and processing capability. The model outperforms certain
previous literature studies and is capable of extracting
deep features from raw histology pictures of breast
cancer. This methodology allows medical professionals to
acquire quick and precise findings, identifying treatments
for various Breast tumor types are identified early on,
preserving lives and expenditures. May, require retraining
on diverse datasets to maintain diagnostic accuracy across
varied breast cancer subtypes.

Zhang et al [64], researched a new DL architecture
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known as T-GEM, or Transformer for Gene Expression
Modelling, which is beneficial for predicting cancer-
related phenotypes. The model employs a thorough
learning method, with the first layer focused on gene-gene
interactions and subsequent layers focusing on phenotype-
related genes. T-GEM’s self-attention can identify
biological functions linked to expected phenotypes. The
researchers also devised a method for extracting the
regulatory network, which identified network hub genes
as potential markers for expected symptoms. However,
T-GEM have limitations in handling large-scale gene
expression data with complex interactions, potentially
impacting its scalability for diverse cancer types.

Wang et al [65], researched introduces graph-based
deep embedding clustering (GDEC), a method for
grouping scRNA-seq data using Transferring knowledge
between animals and batch. GDEC utilizes convolutional
networks based on graphs to overcome sparse gene
expression matrices and split groups of cells into a space
with fewer dimensions, therefore decreasing noise effects.
The method builds a model from existing scRNA-seq
datasets and fine-tunes it with transfer learning techniques.
GDEC was used to uterine fibroids scRNA-seq data,
exposing a new cell type and uncovering new routes
between different cell types, demonstrating its improved
analytical capabilities. The researchers also performed
cross-species and cross-batch clustering investigations.
However, Graph-based deep embedding clustering
enhances analytical capability and clustering accuracy
but may face limitations with high-dimensional noise in
diverse scRNA-seq datasets.

Attallah et al [66], introduced CerCan-Net, an effective
computer-assisted diagnosis tool for cervical cancer.
It uses three lightweight CNNs that have fewer parameters
and deeper layers than prior models: Mobile Net,
DarkNet-19, and ResNet-18. CerCan-Net utilizes transfer
learning to extract deep features from the final three levels
of each CNN, including input from many layers. It then
investigates the impact of developing a smaller set of
deep features to distinguish various subgroups of cervical
cancer. CerCan'Net achieves 97.7% and 100% accuracy
for SIPaKMeD and Mendeley datasets, respectively,
with 400 and 200 features. Its superior performance in
comparison to contemporary CADs makes it appropriate
for cytopathologists in automated inspection, avoiding
limitations in ordinary diagnostic. Despite, CerCan'Net,
while highly accurate, face limitations in generalizability
across diverse cervical cancer subtypes and varied dataset
conditions.

Srikantamurthy et al [67], proposed hybrid CNN-
LSTM model was tested against existing models for breast
histopathology image categorization, such as VGG-16,
ResNet50, and Inception. The Adam optimizer was
determined to be the most accurate and cause the least
amount of model loss. The model has the best overall
accuracy of 99% for binary classification of benign and
malignant cancer, and 92.5% for classification into multiple
classes of benign and dangerous cancer subcategories,
respectively. However, limited generalizability across
diverse histopathology datasets due to variability in
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imaging conditions (Table 4).

Advanced models in cancer research have improved
diagnostic accuracy and feature extraction. DEGnext
enhances prediction accuracy by identifying important
gene expressions, whereas single-cell analysis methods
such as scGSEA and scMAP precisely detect gene activity
patterns and map cell profiles. DCE-MRI and T-GEM
improve molecular categorization and gene function
insights, although they have scalability limitations.
The ATRCN model improves liver cancer prognosis by
identifying prognostic markers, although its applicability
may be limited across different cancer types. GN-AlexNet
and DRNet provide better accuracy and accessibility
for early diagnosis, however deployment in resource-
constrained situations or with different cancer subtypes
may necessitate changes. GDEC’s deep embedding
clustering and CerCan-Net are highly accurate in sScCRNA-
seq and cervical cancer diagnosis, but may be limited by
dataset diversity.

3.5 Critical Synthesis of Gaps

The comparative analysis of ML, explainable
Al, neural network, and transfer learning approaches
highlights several recurring limitations that continue
to hinder the clinical applicability of cancer subtype
classification models. These gaps can be broadly grouped
into three categories: data-related, model-related, and
clinical translation.

* Data-related gaps: Gene expression and multi-omics
datasets remain fragmented, heterogeneous, and often
limited in sample size. The lack of standardized protocols
for data collection, preprocessing, and normalization leads
to inconsistencies across studies, making reproducibility
and cross-comparison challenging. Small and imbalanced
datasets also increase the risk of biased models that fail
to generalize across populations.

* Model-related gaps: While DL and neural networks
capture complex, non-linear biological relationships,
they are computationally intensive, prone to overfitting,
and difficult to scale for large, high-dimensional omics
datasets. MLmodels such as SVMs and decision trees
often provide interpretability but struggle with the
complexity of modern multi-omics data. Even when
models achieve high accuracy in controlled settings, their
robustness and scalability remain limited when applied to
diverse real-world datasets.

* Clinical translation gaps: Despite progress in
explainable Al, many models still operate as “black boxes,”
limiting their clinical interpretability and trustworthiness.
Moreover, the absence of cross-institutional validation
and adaptation mechanisms restricts their deployment
across varied healthcare systems. The lack of integration
with clinical workflows further slows the transition from
research prototypes to practical diagnostic tools.

Taken together, these cross-cutting gaps indicate that
no single methodological category is sufficient on its own.
A unified framework that balances predictive accuracy,
computational efficiency, and interpretability is required
to ensure clinically viable solutions. Future directions
should prioritize integrating multi-omics data, advancing
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explainable Al techniques, optimizing algorithms for
low-resource environments, and employing transfer
learning for robust generalization across populations.
This synthesis sets the stage for the conceptual framework
proposed in the following section, which envisions a
pathway toward scalable, interpretable, and patient-
centered cancer subtype classification.

4. Summary and Discussion

This review highlights the limitations and Future
Prospects in Tumor Subtype Identification Utilizing
Expression Gene Databases, underscoring the potential of
ML and explainable Al frameworks to transform cancer
diagnostics. However, challenges remain in data quality,
interpretability, computational demands, generalizability,
tumor heterogeneity, and standardization. Addressing
these issues requires integrating multi-omics data,
advancing XAl techniques, optimizing computational
methods, leveraging transfer learning, and creating
standardized protocols. Future research can improve the
robustness, scalability, and clinical utility of ML models,
contributing to more accurate cancer subtype classification
and improved patient outcomes.

* The lack of standardized practices in data collection,
pre-processing, and model evaluation in cancer research
studies hinders comparability across studies.

* Advanced pre-processing and data normalization
techniques can improve data reliability by addressing
variability in gene expression data quality and
inconsistencies across diverse sources

* Advance XAI techniques aim to enhance the
accessibility, interpretability, and clinical usefulness
of complex ML models, particularly deep learning, in
clinical practice.

* Optimizing algorithms can improve computational
efficiency and scalability of DL models, especially in
low-resource settings.

* To enhance model robustness across different cancers
and populations, it is recommended to expand the use of
transfer learning and diversify training datasets.

* Integrating multi-omics data and developing
personalized models can enhance subtype accuracy by
better accounting for individual tumor characteristics,
addressing the challenges faced by many models.

* Dataset biases and representational limitations: Many
widely used datasets, such as The Cancer Genome Atlas
(TCGA), are disproportionately composed of samples
from specific geographic regions, ethnic groups, and
clinical settings. This demographic skew introduces
biases that can limit the generalizability of models to
underrepresented populations. Moreover, variations in
sequencing protocols, institutional standards, and data
curation practices can compound these disparities. Future
research should address these limitations by incorporating
more diverse, multi-institutional datasets and developing
fairness-aware learning approaches that explicitly account
for population heterogeneity.

¢ Clinical integration of Al-driven cancer subtype
classifiers faces significant hurdles. Regulatory approval
processes (e.g., FDA, EMA) require rigorous validation,
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standardized reporting, and clear evidence of safety and
efficacy. Equally important is physician acceptance: models
must provide interpretable outputs that clinicians can trust,
while also integrating smoothly into existing diagnostic
workflows and electronic health records (EHRs). Without
addressing these barriers, even technically strong models
may fail to achieve real-world impact.

By addressing these limitations with targeted
advancements, Future research can increase the practical
impact and clinical usefulness of disease subgroup
categorization using ML approaches by addressing these
constraints through targeted breakthroughs.

To address these cross-cutting gaps, we propose an
integrative framework for Al-driven cancer subtype
classification. This framework positions ML as the
foundation for baseline classification, neural networks
as advanced engines for high-dimensional data, XAl as
the interpretability layer to bridge clinical usability, and
transfer learning as the adaptability mechanism to ensure
generalization across datasets and populations. Figure 6
illustrates this unified perspective.

4.1 Translational Challenges and Solutions

While technical advancements in ML, NN, XAl,
and TL have significantly improved cancer subtype
classification, the translation of these methods into clinical
practice faces major challenges:

* Regulatory Hurdles — Al-based diagnostic systems
must meet stringent requirements from regulatory bodies
such as the FDA and EMA. Demonstrating robustness,
reproducibility, and patient safety across diverse
populations is essential before clinical approval.

* Physician Acceptance and Trust — Clinicians require
models that are not only accurate but also interpretable.
Black-box systems, even with high predictive power, often
face resistance due to the lack of transparent decision-
making processes. XAl-driven approaches offer a pathway
to bridging this gap.

» Workflow Integration — Al tools must be seamlessly
integrated into existing clinical infrastructures, such
as electronic health records (EHRs) and hospital IT
systems, without creating additional burden on healthcare
providers.

* Ethical and Legal Considerations — Liability in
cases of misdiagnosis, protection of patient privacy, and
compliance with data-sharing regulations are critical
issues that must be addressed before deployment.

Proposed Solutions

* Develop standardized reporting protocols to improve
reproducibility and regulatory acceptance.

* Co-design Al tools with physicians to enhance trust
and usability.

* Employ federated learning and secure multi-
institutional data-sharing frameworks to overcome data
heterogeneity while preserving privacy.

* Incorporate explainability modules (XAI) and
uncertainty quantification in models to improve physician
confidence in clinical decision-making.

By explicitly addressing these translational barriers,
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Machine learning (ML) Neural Network (NN)
Baseline Classification High-dimensional modeling
Explainable AT (XAI) Transfer learning (TL)
Interpretability for clinicians Generalization and Adaptability

4

Al-driven Cancer Subtype Classification
-Accurate, Scalable, Clinically Applicable

Figure 6. Conceptual Framework for Al-driven Cancer
Subtype Classification

future research can ensure that Al-driven cancer subtype
classification not only achieves technical excellence but
also delivers clinically deployable, ethically sound, and
patient-centered solutions.

In conclusion, the article highlights the potential for
change of neural networks. And explainable Al techniques
in cancer subtype classification using gene expression data.
While current advancements offer improved diagnostic
accuracy, interpretability, and feature extraction,
significant challenges remain, including issues with data
quality, computational scalability, model generalizability,
and the complexity of tumor heterogeneity. To overcome
these limitations, future studies should prioritize the
incorporation of multi-omics data, and the development
of sophisticated preliminary processing and normalization
tools, optimization of algorithms for low-resource
settings, and expansion of transfer learning frameworks to
enhance model robustness across diverse cancer types and
populations. Additionally, creating standardized protocols
for data collection, pre-processing, and evaluation will be
essential to improve comparability and reproducibility
across studies. By focusing on these advancements, the
field can work toward Al-driven solutions that are more
accurate, scalable, and clinically applicable, ultimately
Contributing to better outcomes for patients with a
more tailored cancer therapy strategy. However, for
Al frameworks to transition from research to clinical
deployment, regulatory compliance, physician acceptance,
and seamless integration into healthcare systems remain
critical. Future studies should incorporate validation
strategies aligned with medical regulations, engage
clinicians in co-designing interpretable systems, and
develop deployment pathways compatible with hospital
IT infrastructures. Only then can these Al solutions move
beyond academic promise to deliver tangible benefits in
clinical oncology. The distinctive contribution of this
review lies in its critical synthesis of recurring challenges
and the introduction of a conceptual framework uniting
ML, NN, XAI, and TL. This framework offers a roadmap
for future research to move beyond isolated methods
toward integrated, scalable, and clinically relevant cancer
diagnostic systems.
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