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Introduction

Cancer continues to be one of the leading causes of 
mortality. According to recent statistics from the American 
Cancer Society, cancer remains the second most common 
cause of mortality in the USA, particularly among those 
under 85 years old. The COVID-19 pandemic exacerbated 
this crisis by delaying cancer diagnosis and treatment due 
to healthcare facility closures, economic uncertainties, 
and patients’ fear of exposure to the virus. These delays 
have raised concerns about an increase in late-stage 
cancer diagnoses, potentially contributing to higher 
mortality rates at the community level [1]. The standard 
cancer treatments, such as surgery, chemotherapy, and 
radiotherapy are often effective at treating the primary 
tumor. However, their inability to eliminate dispersed 
tumor cells responsible for metastasis highlights the 
need for more advanced therapeutic strategies. This 
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gap has led to the rise of immunotherapy, a promising 
treatment modality that harnesses the immune system 
to fight cancer [2]. While immunotherapy has shown 
significant success in some cancers, challenges such as 
variable patient responses, immune-related toxicities, and 
the complexity of predicting treatment efficacy remain. 
This is where artificial intelligence (AI) emerges as a 
critical tool, offering the potential to enhance the precision 
and effectiveness of immunotherapy. By leveraging 
AI to analyze the intricate tumor microenvironment 
(TME), researchers can gain insights into the dynamic 
interactions between cancer cells, immune cells, and other 
components. Understanding these interactions can reveal 
novel immunotherapy targets and improve treatment 
outcomes. AI can help predict responses, minimize 
toxicities, and guide more personalized cancer therapies 
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by unravelling the TME landscape. We will explore the 
limitations of current immunotherapies and examine 
how AI can address these challenges. We will discuss the 
role of the TME in shaping immune responses and how 
deciphering its complexities could enhance the predictive 
power and efficacy of cancer immunotherapy. Finally, we 
will explore the limitations of AI in cancer research and the 
future directions for its integration into clinical practice.

2. Cancer immunotherapy
Cancer immunotherapy represents a revolutionary 

approach that utilizes the body’s immune system to combat 
cancer. Recently, this strategy has gained significant 
attention due to its promising results, with innovations 
ranging from immune checkpoint inhibitors to adoptive 
cell therapies [3, 4]. Today, cancer immunotherapy is 
employed across a various cancers, from hematological 
malignancies to solid tumors. This shift has been 
largely inspired by the remarkable successes of immune 
checkpoint inhibitors (ICIs) in melanoma patients and 
CAR-T cell therapies in blood cancers like leukemia 
and multiple myeloma [5, 6]. At the heart of this 
immunotherapeutic approach are immune checkpoints 
key inhibitory receptors that tumors exploit to evade T 
cell activity, a phenomenon known as immune escape. The 
most notable checkpoint inhibitors currently in use include 
programmed cell death 1 (PD-1), programmed death 
ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated 
antigen 4 (CTLA-4). Immunotherapy drugs such as 
nivolumab (anti-PD-1), atezolizumab (anti-PD-L1), and 
ipilimumab (anti-CTLA-4) have shown considerable 
anti-tumor effects, heralding a new era in cancer treatment 
[5, 7]. While CAR-T cell therapy has demonstrated 
impressive outcomes in hematological cancers, it is now 
making strides in addressing the challenges posed by 
solid tumors. Advances in loco-regional delivery and the 
identification of new biomarkers are paving the way for 
targeted therapies that can tackle tumor heterogeneity 
and immune suppression—hallmarks of cancer [8-10]. 
However, despite these promising developments, the 
effectiveness of immunotherapy varies significantly 
among patients. High treatment costs and unpredictable 
responses remain major challenges. Some individuals 
experience substantial benefits, while others may show 
little to no response, sometimes accompanied by serious 
side effects and toxicities [11, 12]. Identifying patients 
who are most likely to benefit from these therapies is 
crucial for enhancing diagnostic accuracy and minimizing 
unnecessary toxicities. This could also alleviate the 
financial burden of treatment, making it more accessible, 
especially in developing countries. A few biomarkers, 
such as the expression of PD-L1, microsatellite instability 
(MSI), tumor mutational burden (TMB), and the number 
of tumor-infiltrating lymphocytes (TILs), have been 
identified to predict responses to immune checkpoint 
inhibitors [13, 14]. Yet, the predictive performance of these 
biomarkers whether used individually or in combination 
remains suboptimal. Some tumors exhibit resistance 
despite the presence of these biomarkers, while others 
may respond favorably without them [15].

To address these gaps, there is a pressing need for 
more accurate, reproducible, and cost-effective predictive 
biomarkers to inform clinical decisions. This is where 
artificial intelligence (AI) comes into play. By analyzing 
vast amounts of data from tumor microenvironments, AI 
has the potential to uncover new immunotherapy targets 
and improve patient outcomes in this evolving landscape 
of cancer treatment.

3. Artificial Intelligence 
Artificial intelligence (AI) is a branch of computer 

science that enables machines to perform tasks typically 
reserved for humans, such as learning, thinking, and 
problem-solving [15, 16]. It includes subsets like machine 
learning (ML) and deep learning (DL), which have become 
widely used, including in cancer research. Researchers 
can utilize off-the-shelf AI products or develop custom 
software pipelines to enhance productivity, uncover 
hidden insights, and improve cancer immunotherapy 
by better understanding the tumor microenvironment 
(TME) [11, 17]. Machine learning focuses on pattern 
recognition and is often called a learning machine due 
to its ability to learn from data. ML has been utilized in 
cancer research for quite some time and there are various 
tools available. A component or method of ML is artificial 
neural network or ANN which is kind of resembles brain 
neural networks and consists of components or units 
known as neurons organized into multiple layers. These 
layers include an input layer receiving the input data, an 
output layer producing the final output, and a few hidden 
layers involved in computation and abstraction [18, 19]. 
Deep learning is a kind of ML that utilizes multilayered 
ANNs, which makes it quite impressive. DL has shown 
major contribution or development in the field of image 
processing and the branch or method used is known as 
computer vision. These deep ANNs may use a component 
known as convolutions which reduces the raw pixel to 
relevant information [11]. Because of the expanded design 
of deep ANNs, higher degrees of computation and data 
representation are supported which enables deep neural 
networks to learn complicated patterns and abstract more 
information. Usually, large datasets are employed to train 
Deep neural networks. Today, in cancer research the 
terms AI and DL are used interchangeably quite a lot, the 
concept of AI overlaps with deep learning. During deep 
learning, the network learns to perform tasks from inputs. 
These inputs may be images such as histopathological 
or radiology images as in the case of oncology [20]. 
Additionally, Multimodal deep learning models integrate 
diverse data types, enhancing data interpretation by 
considering various sources and host factors [21]. By 
harnessing these advanced AI techniques, we can deepen 
our understanding of the tumor microenvironment (TME) 
and its implications for immunotherapy, particularly in 
response prediction and efficacy.

3.1 Unraveling the Tumor Microenvironment: Insights 
and Innovations Through AI

The tumor microenvironment (TME) refers to the 
complex cellular landscape in which tumors and cancer 
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like gene expression or images, and as such are unable 
to completely appreciate and express the depth, diversity 
and dynamism of TME [37-40]. Multimodal models are 
useful for combining multiple and diverse data entities 
and as such can combine both the spatial and non-spatial 
data together [41]. The emergence of such models, which 
converge diverse data types—such as genomic, clinical, 
and imaging data enhances our ability to identify relevant 
patterns and improve diagnostic accuracy than ever before 
[42, 43]. These sophisticated models can analyze complex 
relationships among various TME components, offering a 
comprehensive understanding of how these interactions 
affect patient prognosis and response to immunotherapy 
ultimately paving the way for enhanced therapeutic 
strategies.

3.2 How AI can help in Immunotherapy: response 
prediction and efficacy

AI is transforming the landscape of cancer 
immunotherapy by enhancing response prediction and 
efficacy. One of the key ways AI contributes is through its 
ability to identify new biomarkers and quantitatively assess 
existing ones, such as tumor mutational burden (TMB), 
microsatellite instability (MSI), and PD-1 expression 
[44]. By analyzing image data from oncology, including 
radiology and histopathology slides, AI can extract critical 
information that has often been overlooked in traditional 
medical settings. The core principle of image-based 
biomarkers lies in the recognition that routinely acquired 
images contain much more data than is currently utilized 
[11]. With the aid of deep learning algorithms, particularly 
those based on artificial neural networks, AI can abstract 
meaningful insights from these images. This capability is 
particularly relevant in oncology, where radiology images 
confirm malignancy and histopathology provides insights 
into tumor characteristics and staging. A significant 
advantage of AI is its ability to leverage the vast amount of 
imaging data available in cancer diagnosis and treatment. 
These images can serve as raw material for training AI 
models that predict immunotherapy responses and assess 
treatment efficacy. Deep learning systems can extract 
far more information from radiological and histological 
images than what is typically harnessed in healthcare 
settings.

Deep Radiomics: The emergence of deep radiomics a 
refined version of classical radiomics has revolutionized 
the extraction of features from medical images. While 
traditional radiomics software focused on a limited set of 
features such as shape, intensity, and texture, deep radiomics 
employs convolutional neural networks (CNNs) to access 
a broader spectrum of characteristics. This allows for the 
direct forecasting of target categories from radiology 
image data, enhancing flexibility and providing valuable 
insights relevant to immunotherapy. Additionally, AI 
can predict key biomarkers like TMB, MSI, and PD-L1 
expression from radiology images, capturing how 
these markers change in response to treatment [32, 45]. 
Although the performance of these predictions may not yet 
be optimal, the ability to track molecular and phenotypic 
changes during treatment is invaluable for personalized 

stem cells exist. It significantly influences the growth, 
behavior, and intercellular communication of cancer cells 
[22, 23]. Comprising a variety of elements, the TME 
includes immune cells such as neutrophils, macrophages, 
and lymphocytes, as well as non-immune cells like 
fibroblasts and vascular endothelial cells. This intricate 
environment is not just a mere aggregation of cancer 
cells; rather, it is a heterogeneous mix of resident and 
invading host cells, extracellular matrix components, and 
secreted factors. From the onset of tumor development, 
cancer cells and the constituents of the TME establish a 
dynamic and bidirectional relationship that fosters cancer 
cell survival, metastatic spread, and regional invasion. 
Immune cells play a crucial role in this interplay; they can 
both support and hinder tumor development, influencing 
carcinogenesis, tumor progression, metastasis, and 
recurrence [24, 25]. Traditional assessment methods, 
including western blotting, coimmunoprecipitation, 
and real-time quantitative polymerase chain reaction, 
have provided insights into the interactions between 
tumors and their microenvironments. However, newer 
high-throughput technologies, such as genomics, 
proteomics, and single-cell sequencing, have revealed the 
TME’s complexity, indicating that current approaches are 
insufficient [26-28]. Here, artificial intelligence (AI) can 
bridge the gap, utilizing deep learning to synthesize vast 
amounts of data from multiple sources and uncover novel 
insights. AI has the potential to transform TME analysis by 
managing extensive datasets and conducting sophisticated 
image analyses [29]. By evaluating quantitative and 
spatial characteristics of tumor and immune cells within 
the TME, AI can reveal the predictive prognostic value of 
the environment and provide new avenues for therapeutic 
intervention [30, 31]. Its deep learning algorithms are 
adept at extracting information from histopathological 
images, such as H & E-stained slides, allowing for accurate 
quantification of immune cells and tumor-associated 
structures [32]. Moreover, AI can predict biomarkers like 
TMB, MSI, and PD-L1 expression directly from imaging 
data, enhancing our understanding of tumor phenotypes 
and their evolution throughout treatment [30, 33, 34]. This 
capability is invaluable, as it enables real-time tracking 
of molecular changes that may influence therapeutic 
outcomes. Also, by integrating AI with advancements 
in spatial transcriptomics and other high-throughput 
technologies, researchers can uncover detailed insights 
into cellular interactions and positional relationships 
within the TME. Currently available research, however, 
has shown that the complex interactions with cancer cells 
can cause the precise activity of immune cells to change 
and even reverse. Therefore, to comprehend this dynamic 
condition of TME, more research is required [27, 35, 36]. 
The issue with TME as it exists today is sample bias in 
pathology or expensive, unilateral information-based 
high-end approaches. Through cell quantification and 
localisation, pathologists use histological research to 
identify the TME. However, this approach is susceptible 
to sample bias, whereas methods like single-cell genomics 
and spatial transcriptomics are costly, time-consuming, 
and usually rely on information from a single source, 
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cancer therapy [46, 47].
Computational Pathology: AI has also given rise to 

the field of computational pathology, which improves 
the analysis of histopathology [30, 48]. Traditionally, 
pathologists examined hematoxylin and eosin (H&E) 
slides to assess tumor characteristics. Although 
conventional histopathology allows us to look for various 
types of cells and get a basic understanding of their 
quantitative and spatial features but is invasive and can 
be subject to sample bias. AI can quantify biomarkers like 
PD-L1 expression from H&E slides and provide scoring 
that aids in identifying patients sensitive to immune 
checkpoint inhibitors (ICIs) [32, 49, 50]. Furthermore, 
computational pathology utilizes deep learning to count 
immune cells, such as tumor-infiltrating lymphocytes 
(TILs). By abstracting complex visual patterns and 
analyzing cell morphology, deep learning can determine 
tumor sensitivity to immunotherapy, assessing features 
such as cell shape, phenotype, and spatial relationships 
from raw histopathology images [51, 52].

The integration of these advanced AI techniques not 
only quantifies immunotherapy-related biomarkers but also 
enhances the prediction of therapeutic responses through 
scores like the immunoscore and immunophenoscore 
[53-55]. By effectively forecasting the probability of 
successful immunotherapy outcomes, AI is facilitating 
the development of more targeted and personalized 
approaches to cancer treatment.

4. Limitations of AI and what needs to be done
There are a few limitations to the use of AI, among 

them first one is related to trustworthiness. It has to do with 
the human mind’s capacity to comprehend its intricate 
algorithms. The traditional or earlier ML models could 
be explained, but the more recent Deep ANNs-based DL 
models are quite intricate and the presence of multilayered 
neural networks with a substantial number of hidden 
layers for computation makes their algorithm hard to 
be explained by the human mind and have thus attained 
the moniker of “Black box models”. Another limitation 
is related to the training of AI models such as DL-based 
models. Other than requiring a large amount of data, 
the quality of data should also be high. If the data is 
unclear, artefactual, or noisy, then it would be difficult to 
get accurate results. To compensate for this even larger 
amount of data is needed to reach a decent result [56]. 
Another issue is related to generalization and is quite 
prominent in a field where data varies a lot from location 
to location, between different healthcare centres and 
nations. The data should represent a real-world scenario 
so as to provide a better generalized result. Another 
problem related is data bias. The data may be bias based 
on ethnicity, age, and gender. For this large amount 
of data is needed, so as to make the model bias-free 
and generalized. Further proper validation is needed 
to utilize these models in the real-world scenario on a 
routinely basis [48, 57]. A major conceptual limitation 
of the AI model is based on histopathology and is related 
to computational pathology. As we know the H and E 
slides of IHC samples are acquired at the initial stage of 

treatment [51]. Immunotherapy is typically administered 
following two or three therapeutic modalities. Therefore, 
there is a few-month lag between initial treatments or 
regimens such as surgery, radiotherapy, and chemotherapy 
to immunotherapeutic treatment. The issue stems 
from data training, which is often carried out on initial 
histopathology samples, even if the tumor niche may have 
changed by the time immunotherapy is administered. 
One possible course of action is to collect samples at a 
later stage as well and switch immunotherapy to earlier 
treatment modalities.

In conclusion, immunotherapy has demonstrated 
remarkable promise in treating cancer, particularly 
in patients who have undergone two or more lines of 
conventional therapies and are at risk of recurrence. 
Immune checkpoint inhibitors and adoptive cell therapies 
have the potential not only to address primary tumors but 
also to target dispersed or disseminated malignant cells, 
leading to complete remission. However, challenges 
remain, including limited applicability to certain patient 
populations and high costs. As the saying goes, “Every 
problem has the seed of its own solution hidden within 
it.” The vast data generated from routine procedures 
such as radiology and histopathology, combined with the 
complexity of cancer, presents a significant opportunity 
for training artificial intelligence models. These models 
can predict treatment responses and efficacy, allowing for 
more tailored therapies that benefit only those patients 
most likely to respond. This approach could significantly 
reduce the burden on healthcare systems and lower 
treatment costs.

This interdisciplinary collaboration has deepened our 
understanding of the tumor microenvironment, an area 
that has remained elusive despite extensive research. 
With advancements in immunomics and technologies 
like next-generation sequencing (NGS), omics, single-cell 
sequencing, and spatial transcriptomics, we are finally 
able to gain insights into this complex environment. 
AI plays a crucial role in integrating diverse data sources 
through its multilayered deep neural networks, enabling 
the extraction of relevant patterns and information. 
By combining these AI capabilities with spatial 
transcriptomics, we stand to enhance our understanding of 
the cancer ecosystem, paving the way for the discovery of 
new therapeutic targets and improving predictions of 
immunotherapy responses and overall treatment efficacy 
in clinical settings.

As medical, analytical, and research technologies 
continue to advance alongside data collection methods 
and computer science, it is likely that AI and its deep 
learning subset will fundamentally transform cancer 
diagnosis and treatment.
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