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Cancer remains one of the leading causes of death worldwide, second only to cardiovascular
diseases. Standard cancer treatments, such as chemotherapy, radiation, and surgery, are
effective for primary tumors but often fail to eliminate disseminated tumor cells responsible
for metastasis. This limitation underscores the necessity for advanced therapeutic strategies,
leading to the rise of immunotherapy, which leverages the immune system to combat cancer.
Despite its promise, immunotherapy faces challenges, including variable patient responses
and immune-related toxicities, complicating the prediction of treatment efficacy. Here,
artificial intelligence (AI) emerges as a vital tool that can enhance the precision and
effectiveness of immunotherapy by analyzing the intricate tumor microenvironment (TME).
This paper explores the limitations of current immunotherapies and examines how AI can
address these challenges. It discusses the TME’s role in shaping immune responses,
highlighting how understanding its complexities can improve predictive power and treatment
outcomes. Furthermore, we address the limitations of AI in cancer research and propose
future directions for its integration into clinical practice, with the potential to revolutionize
personalized cancer therapy and improve overall patient care.

Introduction
Cancer continues to be one of the leading causes of mortality. According to recent statistics from
the American Cancer Society, cancer remains the second most common cause of mortality in the
USA, particularly among those under 85 years old. The COVID-19 pandemic exacerbated this crisis
by delaying cancer diagnosis and treatment due to healthcare facility closures, economic
uncertainties, and patients’ fear of exposure to the virus. These delays have raised concerns about
an increase in late-stage cancer diagnoses, potentially contributing to higher mortality rates at the
community level [1]. The standard cancer treatments, such as surgery, chemotherapy, and
radiotherapy are often effective at treating the primary tumor. However, their inability to eliminate
dispersed tumor cells responsible for metastasis highlights the need for more advanced therapeutic
strategies. This gap has led to the rise of immunotherapy, a promising treatment modality that
harnesses the immune system to fight cancer [2]. While immunotherapy has shown significant
success in some cancers, challenges such as variable patient responses, immune-related toxicities,
and the complexity of predicting treatment efficacy remain. This is where artificial intelligence (AI)
emerges as a critical tool, offering the potential to enhance the precision and effectiveness of
immunotherapy. By leveraging AI to analyze the intricate tumor microenvironment (TME),
researchers can gain insights into the dynamic interactions between cancer cells, immune cells,
and other components. Understanding these interactions can reveal novel immunotherapy targets
and improve treatment outcomes. AI can help predict responses, minimize toxicities, and guide
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more personalized cancer therapies by unravelling the TME landscape. We will explore the
limitations of current immunotherapies and examine how AI can address these challenges. We will
discuss the role of the TME in shaping immune responses and how deciphering its complexities
could enhance the predictive power and efficacy of cancer immunotherapy. Finally, we will explore
the limitations of AI in cancer research and the future directions for its integration into clinical
practice.

  2. Cancer immunotherapy  

Cancer immunotherapy represents a revolutionary approach that utilizes the body’s immune system
to combat cancer. Recently, this strategy has gained significant attention due to its promising
results, with innovations ranging from immune checkpoint inhibitors to adoptive cell therapies [3,
4]. Today, cancer immunotherapy is employed across a various cancers, from hematological
malignancies to solid tumors. This shift has been largely inspired by the remarkable successes of
immune checkpoint inhibitors (ICIs) in melanoma patients and CAR-T cell therapies in blood
cancers like leukemia and multiple myeloma [5, 6]. At the heart of this immunotherapeutic
approach are immune checkpoints key inhibitory receptors that tumors exploit to evade T cell
activity, a phenomenon known as immune escape. The most notable checkpoint inhibitors currently
in use include programmed cell death 1 (PD-1), programmed death ligand 1 (PD-L1), and cytotoxic
T lymphocyte-associated antigen 4 (CTLA-4). Immunotherapy drugs such as nivolumab (anti-PD-1),
atezolizumab (anti-PD-L1), and ipilimumab (anti-CTLA-4) have shown considerable anti-tumor
effects, heralding a new era in cancer treatment [5, 7]. While CAR-T cell therapy has demonstrated
impressive outcomes in hematological cancers, it is now making strides in addressing the
challenges posed by solid tumors. Advances in loco-regional delivery and the identification of new
biomarkers are paving the way for targeted therapies that can tackle tumor heterogeneity and
immune suppression—hallmarks of cancer [8-10]. However, despite these promising developments,
the effectiveness of immunotherapy varies significantly among patients. High treatment costs and
unpredictable responses remain major challenges. Some individuals experience substantial
benefits, while others may show little to no response, sometimes accompanied by serious side
effects and toxicities [11, 12]. Identifying patients who are most likely to benefit from these
therapies is crucial for enhancing diagnostic accuracy and minimizing unnecessary toxicities. This
could also alleviate the financial burden of treatment, making it more accessible, especially in
developing countries. A few biomarkers, such as the expression of PD-L1, microsatellite instability
(MSI), tumor mutational burden (TMB), and the number of tumor-infiltrating lymphocytes (TILs),
have been identified to predict responses to immune checkpoint inhibitors [13, 14]. Yet, the
predictive performance of these biomarkers whether used individually or in combination remains
suboptimal. Some tumors exhibit resistance despite the presence of these biomarkers, while others
may respond favorably without them [15].

To address these gaps, there is a pressing need for more accurate, reproducible, and cost-effective
predictive biomarkers to inform clinical decisions. This is where artificial intelligence (AI) comes
into play. By analyzing vast amounts of data from tumor microenvironments, AI has the potential to
uncover new immunotherapy targets and improve patient outcomes in this evolving landscape of
cancer treatment.

3. Artificial Intelligence

Artificial intelligence (AI) is a branch of computer science that enables machines to perform tasks
typically reserved for humans, such as learning, thinking, and problem-solving [15, 16]. It includes
subsets like machine learning (ML) and deep learning (DL), which have become widely used,
including in cancer research. Researchers can utilize off-the-shelf AI products or develop custom
software pipelines to enhance productivity, uncover hidden insights, and improve cancer
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immunotherapy by better understanding the tumor microenvironment (TME) [11, 17]. Machine
learning focuses on pattern recognition and is often called a learning machine due to its ability to
learn from data. ML has been utilized in cancer research for quite some time and there are various
tools available. A component or method of ML is artificial neural network or ANN which is kind of
resembles brain neural networks and consists of components or units known as neurons organized
into multiple layers. These layers include an input layer receiving the input data, an output layer
producing the final output, and a few hidden layers involved in computation and abstraction [18,
19]. Deep learning is a kind of ML that utilizes multilayered ANNs, which makes it quite
impressive. DL has shown major contribution or development in the field of image processing and
the branch or method used is known as computer vision. These deep ANNs may use a component
known as convolutions which reduces the raw pixel to relevant information [11]. Because of the
expanded design of deep ANNs, higher degrees of computation and data representation are
supported which enables deep neural networks to learn complicated patterns and abstract more
information. Usually, large datasets are employed to train Deep neural networks. Today, in cancer
research the terms AI and DL are used interchangeably quite a lot, the concept of AI overlaps with
deep learning. During deep learning, the network learns to perform tasks from inputs. These inputs
may be images such as histopathological or radiology images as in the case of oncology [20].
Additionally, Multimodal deep learning models integrate diverse data types, enhancing data
interpretation by considering various sources and host factors [21]. By harnessing these advanced
AI techniques, we can deepen our understanding of the tumor microenvironment (TME) and its
implications for immunotherapy, particularly in response prediction and efficacy.

  3.1 Unraveling the Tumor Microenvironment: Insights and Innovations Through AI  

The tumor microenvironment (TME) refers to the complex cellular landscape in which tumors and
cancer stem cells exist. It significantly influences the growth, behavior, and intercellular
communication of cancer cells [22, 23]. Comprising a variety of elements, the TME includes
immune cells such as neutrophils, macrophages, and lymphocytes, as well as non-immune cells like
fibroblasts and vascular endothelial cells. This intricate environment is not just a mere aggregation
of cancer cells; rather, it is a heterogeneous mix of resident and invading host cells, extracellular
matrix components, and secreted factors. From the onset of tumor development, cancer cells and
the constituents of the TME establish a dynamic and bidirectional relationship that fosters cancer
cell survival, metastatic spread, and regional invasion. Immune cells play a crucial role in this
interplay; they can both support and hinder tumor development, influencing carcinogenesis, tumor
progression, metastasis, and recurrence [24, 25]. Traditional assessment methods, including
western blotting, coimmunoprecipitation, and real-time quantitative polymerase chain reaction,
have provided insights into the interactions between tumors and their microenvironments.
However, newer high-throughput technologies, such as genomics, proteomics, and single-cell
sequencing, have revealed the TME’s complexity, indicating that current approaches are
insufficient [26-28]. Here, artificial intelligence (AI) can bridge the gap, utilizing deep learning to
synthesize vast amounts of data from multiple sources and uncover novel insights. AI has the
potential to transform TME analysis by managing extensive datasets and conducting sophisticated
image analyses [29]. By evaluating quantitative and spatial characteristics of tumor and immune
cells within the TME, AI can reveal the predictive prognostic value of the environment and provide
new avenues for therapeutic intervention [30, 31]. Its deep learning algorithms are adept at
extracting information from histopathological images, such as H & E-stained slides, allowing for
accurate quantification of immune cells and tumor-associated structures [32]. Moreover, AI can
predict biomarkers like TMB, MSI, and PD-L1 expression directly from imaging data, enhancing our
understanding of tumor phenotypes and their evolution throughout treatment [30, 33, 34]. This
capability is invaluable, as it enables real-time tracking of molecular changes that may influence
therapeutic outcomes. Also, by integrating AI with advancements in spatial transcriptomics and
other high-throughput technologies, researchers can uncover detailed insights into cellular
interactions and positional relationships within the TME. Currently available research, however,
has shown that the complex interactions with cancer cells can cause the precise activity of immune
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cells to change and even reverse. Therefore, to comprehend this dynamic condition of TME, more
research is required [27, 35, 36]. The issue with TME as it exists today is sample bias in pathology
or expensive, unilateral information-based high-end approaches. Through cell quantification and
localisation, pathologists use histological research to identify the TME. However, this approach is
susceptible to sample bias, whereas methods like single-cell genomics and spatial transcriptomics
are costly, time-consuming, and usually rely on information from a single source, like gene
expression or images, and as such are unable to completely appreciate and express the depth,
diversity and dynamism of TME [37-40]. Multimodal models are useful for combining multiple and
diverse data entities and as such can combine both the spatial and non-spatial data together [41].
The emergence of such models, which converge diverse data types—such as genomic, clinical, and
imaging data enhances our ability to identify relevant patterns and improve diagnostic accuracy
than ever before [42, 43]. These sophisticated models can analyze complex relationships among
various TME components, offering a comprehensive understanding of how these interactions affect
patient prognosis and response to immunotherapy ultimately paving the way for enhanced
therapeutic strategies.

  3.2 How AI can help in Immunotherapy: response prediction and efficacy  

AI is transforming the landscape of cancer immunotherapy by enhancing response prediction and
efficacy. One of the key ways AI contributes is through its ability to identify new biomarkers and
quantitatively assess existing ones, such as tumor mutational burden (TMB), microsatellite
instability (MSI), and PD-1 expression [44]. By analyzing image data from oncology, including
radiology and histopathology slides, AI can extract critical information that has often been
overlooked in traditional medical settings. The core principle of image-based biomarkers lies in the
recognition that routinely acquired images contain much more data than is currently utilized [11].
With the aid of deep learning algorithms, particularly those based on artificial neural networks, AI
can abstract meaningful insights from these images. This capability is particularly relevant in
oncology, where radiology images confirm malignancy and histopathology provides insights into
tumor characteristics and staging. A significant advantage of AI is its ability to leverage the vast
amount of imaging data available in cancer diagnosis and treatment. These images can serve as
raw material for training AI models that predict immunotherapy responses and assess treatment
efficacy. Deep learning systems can extract far more information from radiological and histological
images than what is typically harnessed in healthcare settings.

Deep Radiomics: The emergence of deep radiomics a refined version of classical radiomics has
revolutionized the extraction of features from medical images. While traditional radiomics software
focused on a limited set of features such as shape, intensity, and texture, deep radiomics employs
convolutional neural networks (CNNs) to access a broader spectrum of characteristics. This allows
for the direct forecasting of target categories from radiology image data, enhancing flexibility and
providing valuable insights relevant to immunotherapy. Additionally, AI can predict key biomarkers
like TMB, MSI, and PD-L1 expression from radiology images, capturing how these markers change
in response to treatment [32, 45]. Although the performance of these predictions may not yet be
optimal, the ability to track molecular and phenotypic changes during treatment is invaluable for
personalized cancer therapy [46, 47].

Computational Pathology: AI has also given rise to the field of computational pathology, which
improves the analysis of histopathology [30, 48]. Traditionally, pathologists examined hematoxylin
and eosin (H&E) slides to assess tumor characteristics. Although conventional histopathology
allows us to look for various types of cells and get a basic understanding of their quantitative and
spatial features but is invasive and can be subject to sample bias. AI can quantify biomarkers like
PD-L1 expression from H&E slides and provide scoring that aids in identifying patients sensitive to
immune checkpoint inhibitors (ICIs) [32, 49, 50]. Furthermore, computational pathology utilizes
deep learning to count immune cells, such as tumor-infiltrating lymphocytes (TILs). By abstracting
complex visual patterns and analyzing cell morphology, deep learning can determine tumor

                               4 / 9



Asian Pacific Journal of Cancer Care
Vol 9 No 4 (2024), 793-799
Review and Meta-analysis

sensitivity to immunotherapy, assessing features such as cell shape, phenotype, and spatial
relationships from raw histopathology images [51, 52].

The integration of these advanced AI techniques not only quantifies immunotherapy-related
biomarkers but also enhances the prediction of therapeutic responses through scores like the
immunoscore and immunophenoscore [53-55]. By effectively forecasting the probability of
successful immunotherapy outcomes, AI is facilitating the development of more targeted and
personalized approaches to cancer treatment.

  4. Limitations of AI and what needs to be done  

There are a few limitations to the use of AI, among them first one is related to trustworthiness. It
has to do with the human mind’s capacity to comprehend its intricate algorithms. The traditional or
earlier ML models could be explained, but the more recent Deep ANNs-based DL models are quite
intricate and the presence of multilayered neural networks with a substantial number of hidden
layers for computation makes their algorithm hard to be explained by the human mind and have
thus attained the moniker of “Black box models”. Another limitation is related to the training of AI
models such as DL-based models. Other than requiring a large amount of data, the quality of data
should also be high. If the data is unclear, artefactual, or noisy, then it would be difficult to get
accurate results. To compensate for this even larger amount of data is needed to reach a decent
result [56]. Another issue is related to generalization and is quite prominent in a field where data
varies a lot from location to location, between different healthcare centres and nations. The data
should represent a real-world scenario so as to provide a better generalized result. Another
problem related is data bias. The data may be bias based on ethnicity, age, and gender. For this
large amount of data is needed, so as to make the model bias-free and generalized. Further proper
validation is needed to utilize these models in the real-world scenario on a routinely basis [48, 57].
A major conceptual limitation of the AI model is based on histopathology and is related to
computational pathology. As we know the H and E slides of IHC samples are acquired at the initial
stage of reatment [51]. Immunotherapy is typically administered following two or three therapeutic
modalities. Therefore, there is a few-month lag between initial treatments or regimens such as
surgery, radiotherapy, and chemotherapy to immunotherapeutic treatment. The issue stems from
data training, which is often carried out on initial histopathology samples, even if the tumor niche
may have changed by the time immunotherapy is administered. One possible course of action is to
collect samples at a later stage as well and switch immunotherapy to earlier treatment modalities.

In conclusion, immunotherapy has demonstrated remarkable promise in treating cancer,
particularly in patients who have undergone two or more lines of conventional therapies and are at
risk of recurrence. Immune checkpoint inhibitors and adoptive cell therapies have the potential not
only to address primary tumors but also to target dispersed or disseminated malignant cells,
leading to complete remission. However, challenges remain, including limited applicability to
certain patient populations and high costs. As the saying goes, “Every problem has the seed of its
own solution hidden within it.” The vast data generated from routine procedures such as radiology
and histopathology, combined with the complexity of cancer, presents a significant opportunity for
training artificial intelligence models. These models can predict treatment responses and efficacy,
allowing for more tailored therapies that benefit only those patients most likely to respond. This
approach could significantly reduce the burden on healthcare systems and lower treatment costs.

This interdisciplinary collaboration has deepened our understanding of the tumor
microenvironment, an area that has remained elusive despite extensive research. With
advancements in immunomics and technologies like next-generation sequencing (NGS), omics,
single-cell sequencing, and spatial transcriptomics, we are finally able to gain insights into this
complex environment. AI plays a crucial role in integrating diverse data sources through its
multilayered deep neural networks, enabling the extraction of relevant patterns and information.
By combining these AI capabilities with spatial transcriptomics, we stand to enhance our

                               5 / 9



Asian Pacific Journal of Cancer Care
Vol 9 No 4 (2024), 793-799
Review and Meta-analysis

understanding of the cancer ecosystem, paving the way for the discovery of new therapeutic
targets and improving predictions of immunotherapy responses and overall treatment efficacy in
clinical settings.

As medical, analytical, and research technologies continue to advance alongside data collection
methods and computer science, it is likely that AI and its deep learning subset will fundamentally
transform cancer diagnosis and treatment.
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