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Background: We introduce the S M Nazmuz Sakib MechanoTranscriptomic Gradient
Alignment (MTGA) framework for solid tumors, formalizing a directional coupling between
tissue stiffness gradients and malignant cell-state gradients.

Methods: The core statistic, the Sakib Alignment Index kS, averages the local cosine of the
angle between VE stiffness) and VS (cell-state score) with scale-aware weighting; the
companion Sakib Flux Coefficient 1S estimates a signed mechanosensitivity slope relating VS
to VE. We describe multi-scale estimation, spatially autocorrelated nulls, registration/stability
diagnostics, and edge-versus-core enrichment.

Results: Using synthetic data and analysis-ready plotting primitives, we provide ten ready-to-
compile illustrations.

Conclusion: Contextualized against durotaxis and spatial transcriptomics, and recent
mechanotranscriptomic analytics, the framework appears conceptually novel: prior work
studied stiffness heterogeneity and gene-expression gradients, but not a single directional
alignment index nor a signed flux fit across tumor sections. We outline how to apply MTGA on
AFM/MRE/SHG or force-inference layers co-registered to Visium-like grids, with spatially-
constrained nulls via Moran spectral randomization.

Introduction

Tumors exhibit spatial heterogeneity in extracellular matrix (ECM) stiffness that affects invasion,
EMT, and therapy response [1-4, 5-9]. Durotaxis migration along stiffness gradients has been
demonstrated at cell and tissue scales. In parallel, spatial transcriptomics (ST) routinely reveals
core-to-edge gene-expression architectures predictive of outcomes. While computational alignment
of ST datasets is advancing, and mechanotranscriptomic integration at single-cell resolution is
emerging, a directional co-gradient scalar summarizing alignment between VE (stiffness) and VS
(cell state) across a tumor section has not been formalized [1-4].

The S M Nazmuz Sakib MTGA Framework
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Definition 1 (Sakib Alignment Index kS). On a tissue domain Q with stiffness map E (x) and cell-
state score with kS € [-1,1]; +1 indicates perfect co-alignment and -1 anti-alignment. Here w(x)
weights (e.g., tumor mask X spot density), and («, B) =0 emphasize informative gradients.

x 1 x x Definition 2 (Sakib Flux Coefficient uS (Directed Mechano-Transcriptomic Flux)). Estimate
the signed gain linking VS to VE by the least-squares fit uS = arg min 3 w (x) IVS(x)-p VE(x) 12 = (S
w (x) VE-VS)/ S w (x) IIVE]2). uS has units of S per stiffness and complements kS (direction vs.
gain). Report with R? and a spatially-aware p-value.

S M Nazmuz Sakib Principle 1 (Multi-scale MTGA). Compute k S (o) after smoothing (E,S) with
scale o; summarize via the scale-integrated index siMTGA=1/|%|

S(0€2)kS (o) (log-spaced X), revealing whether coupling is fine-grained (edge) or coarse (tissue-
level).

S M Nazmuz Sakib Hypothesis 1 (Edge Enrichment). kS is elevated within a finite band of the
invasive edge relative to the tumor core in cancers with durotaxis- consistent programs.

Data Layers and Registration

Mechanics layer E (x). Direct stiffness maps can be obtained by AFM on sections or via ex vivo SIM-
AFM co-registered to fluorescence. When unavailable, stiffness proxies from SHG/collagen
organization or force-inference tensors can be used [4, 10 ,11].

Omics layer S (x). Choose a scalar cell-state (EMT, stemness, hypoxia, pseudotime, therapy-
response metagene). ST registration. Align mechanical and ST grids with diffeomorphic tools (e.g.,
STalign) [12, 13].

Estimation, Inference, and Stability

Compute V on a regular grid (Sobel/finite differences) or graph gradients on irregular spots. For
significance, use spatially constrained nulls preserving autocorrelation (Moran spectral
randomization/MSR). Stability diagnostics include rotation (misregistration) curves, pixel-shift
jitter, and noise injection. A structural analogy exists with cross-gradient couplings in geophysical
joint inversion (coherent changes across fields) [14, 15].

Results on a Synthetic Section

Using a circular tumor mask with aligned (E,S) plus realistic smoothness, the suite yields: (i) rising
KS (o) with scale; (ii) positive siMTGA; (iii) modest edge>core AKS; (iv) rotation and shift sensitivity
curves; (v) nS>0 with MSR-based significance (Figures 1-10).

Figure 1. Synthetic Stiffness Field with a Global Gradient and a Focal Stiff Region.

Figure 2. Synthetic Cell-state Field with Partial Alignment to E (x).
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Figure 3. Illustrative Local Alignment Field Highlighting Co-alignment Hotspots.
Figure 4. Scale Profile of the Sakib Alignment Index (synthetic example).

Figure 5. Spatially Aware Significance (Moran spectral randomization).

Figure 6. Modest Front-loading of Alignment Near the Invasive Edge (synthetic).
Figure 7. Directional Specificity: kS Peaks at Correct Orientation.

Figure 8. Robustness to Small Mis-registrations (center retains positive kS).
Figure 9. Alignment Degrades with Noise Yet Remains > 0 at Moderate Levels.

Figure 10. Spatially Constrained Null Distribution (MSR) and Observed pS = 0.314.

These compile directly and can be replaced with real-data numbers.

Discussion and Related Work

Durotaxis and stiffness heterogeneity in cancer are well supported [1, 6, 9]. Spatial core/edge
biology and alignment methods are established [2, 3]. Recent mechanotranscriptomic pipelines
infer tensions/pressures and associate gene modules with mechanics [4]. To our knowledge, a
single directional alignment scalar (kS) and signed flux (uS) defined across tumor sections have not
been jointly formalized before; they provide a compact, interpretable signature and a clear
falsifiability path via MSR nulls [14].

Limitations and Usage Notes

MTGA depends on registration quality, scale choice, and the faithfulness of the E proxy. Report
stability indices (rotation/shift/noise), edge-vs-core AkS, nS with R?, and MSR p-values.

In conclusion, we present the S M Nazmuz Sakib MechanoTranscriptomic Gradient Alignment with
two complementary readouts: kS (directional alignment) and puS (directed gain). The framework is

lightweight, interpretable, and compatible with contemporary ST + mechanics pipelines, offering a
candidate biomarker suite for mechano-targeting stratification.
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