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Background: The relentless pursuit of effective cancer treatments has led researchers to
explore bioactive peptides as a complementary approach to cancer therapy. These peptides,
which can be of natural or synthetic origin, are not only identified as potent therapeutic
agents but also exhibit significant diagnostic capabilities. The review aims to summarize the
properties, classification, and mechanisms of action of these natural peptides on different
cancer cell lines, suggesting their potential as safer and more effective cancer treatments.

Objective: To provide an in-depth exploration of bioactive peptides derived from natural
sources, revealing their anticancer properties and theoretical models that explain their
actions. The review also addresses the complexities of ACP production and classification and
sheds light on their potential as less harmful and more precise alternatives to conventional
cancer therapies.

Method: The review includes a comprehensive analysis of the literature on bioactive
peptides, focusing on their origin, properties, classification, and mechanisms of action. It
examines various theories that explain the effect of bioactive peptides on cancer cells and
discusses the natural sources of these peptides, their production processes, and classification
into different types of ACPs.

Findings: The review identifies a range of bioactive peptides with anticancer properties from
various sources, including animals, plants, fungi, and marine organisms. These peptides act
through diverse mechanisms, such as membrane disruption, apoptosis induction, and immune
system modulation. The review provides a detailed account of the peptides’ effects on
different cancer cell lines and their potential therapeutic applications.

Discussion and Conclusion: The review concludes that bioactive peptides offer a promising
avenue for cancer therapy, with the potential to revolutionize treatment landscapes. It
emphasizes the need for further research to fully realize the therapeutic potential of these
peptides and their role in the future of cancer treatment. The review also highlights the
importance of understanding the structure-function relationship of bioactive peptides to
enhance their therapeutic efficacy and reduce systemic toxicity.

Introduction
As one of the leading causes of morbidity and death, cancer poses a serious danger to human
health and wellbeing worldwide. About 20 million deaths were linked to cancer according to a
World Health Organization report [1-3]. Men were more likely to die from lung, prostate, colorectal
and stomach cancers while women were more likely to die from breast, colorectal, lung, cervical
and thyroid cancers. Currently, the gold standard for cancer treatment consists of three main
components: radiation therapy, chemotherapy, and surgery [4]. However, the conventional
approach has some drawbacks such as the lack of screening tools for early cancer identification
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and the lack of specialized drug delivery methods for particular tumor types. Moreover, most
standard anticancer medications lack the ability to differentiate between healthy and malignant
cells which can lead to unwanted side effects and systemic toxicity [5]. Given the aforementioned
difficulties, the need for therapeutic medications that specifically target cancer is paramount.
Bioactive peptides are gaining a lot of interest in this regard as potentially effective therapeutic
agents for the treatment of cancer [6]. People who have been diagnosed with cancer in recent
decades have demonstrated an increasing interest in adding complementary medicine (CM) to their
treatment plan. The aim of Anticancer peptides is that the general health and well-being are to be
improved, traditional cancer treatments to be more successful, survival rates to be raised and side
effects related to the disease and treatments to be reduced [7]. A branch of supplementary
medicine that uses organic materials namely bioactive peptides is one such category. These
peptides are characterized as brief sequences of amino acids (3–20 AAs) that are present in
proteins and have favorable effects on the regulation and control of metabolic processes. They can
also be considered as useful approach in the treatment and prophylaxis of many illnesses [8].
Bioactive peptides are latent within parent proteins and can only be released through enzymatic
hydrolysis, food processing or microbial fermentations to exhibit their beneficial effects. These
peptides have the potential to be exploited in the management and prevention of diseases. Many of
the body’s normal functions are triggered or regulated by the interaction of particular amino acid
sequences that appear as peptides or protein fragments suggesting that these could be employed in
a broad spectrum of therapeutic interventions [9]. The relationship between the structure and
functions of bioactive peptides has not yet been fully established so this study’s focus is on the most
recent studies on the immunomodulatory and anticancer effects of bioactive peptides derived from
natural sources using enzymatic hydrolysis. It has been discovered that these peptides cause
apoptosis or programmed cell death in malignant cells and prevent the growth and multiplication of
different cancer cells. These bioactive peptides can also affect the immune system demonstrating
actions that are they have both stimulatory and anti-inflammatory property. Because of these
characteristics, bioactive peptides are attractive candidates for the creation of novel functional and
therapeutic dietary additives. Peptides are intriguing and hopeful therapy possibilities because of
their favorable characteristics which includes their decreased toxicity when compared to
conventional chemical medications and their high affinity and specificity for target molecules so
there is a possibility to employ these peptides in place of traditional medications [10, 11].
Membrane separation techniques, ultrafiltration, membrane chromatography and ion exchange
protocols are the main methods used in the production and purification of bioactive peptides.
Furthermore, while certain bioactive peptides like endorphins are created naturally while others
are made by enzymatic cleavage, microbial fermentation and protein breakdown. Usually, bioactive
peptides have a molecular weight of roughly 102–103 Da and comprises of 2–50 amino acid
residues. As a result, they can easily break through or breach the cell membrane causing necrosis
or apoptosis. Despite the advancements and successes in the detection and treatment of cancer,
novel strategies in particular the use of natural peptides have been investigated for development of
more potent alternatives for cancer treatment [12]. Many bioactive peptides with anti-
inflammatory, anti-hypertensive, antimicrobial and anti-cancer properties have been discovered and
isolated from natural animal and plant sources with the advancement of biology and biomedicine
[13].

Cancer is a general term for a variety of diseases that have harmful effects such as uncontrolled
cell division leading to the formation of a cell cluster that can invade nearby tissues and dispersing
to other regions by a process known as metastasis [14]. Thus, there is an incredible need for the
development and application of a novel therapeutic agent. Against the backdrop of traditional
cancer treatment modalities like radiotherapy, chemotherapy or surgery as well as optical methods
like CT, MRI and PET for diagnostic and therapeutic applications, bioactive molecules, especially
anticancer peptides are extremely important in this field. Naturally occurring peptides possess a
wide range of amino acid residues (5 to 50) and are notable for their minute size, high activity, low
immunogenicity, excellent biocompatibility, diversity of sequence, and multiple modification sites
for functional molecules. These attributes make peptides extremely promising especially in the field
of cancer therapy [15]. Antimicrobial Peptides (AMPs) are amphiphilic peptides that are created by

                             2 / 15



Asian Pacific Journal of Cancer Care
Vol 9 No 4 (2024), 801-811
Review and Meta-analysis

the immune system and are derived from a wide range of species. They are the first line of defense
against invasive infections and are encoded with genes. Amphiphilic peptides have attracted a lot of
attention for their potential therapeutic applications because of their wide range of activity and
little likelihood of causing resistance.

  2. Membrane-active and Non-active Peptides  
Although the exact nature of AMPs’ anticancer action in respect to malignant targets is yet
unknown, evidence points to a major involvement for pathways involving both membrane-lytic and
non-membrane- lytic activity. Pentostatin and Properdistatin are two examples of membrane-
inactive peptides that have been identified as having non-damaging membrane processes [16]. Two
prime examples of such processes are the inhibition of angiogenesis and the activation of extrinsic
apoptotic pathways [17]. Membrane-active peptides with selectivity for bacterial cell membranes
include Defensins, Cecropins, and Magainins which are examples of antimicrobial peptides.
Antimicrobials are categorized into different groups based on their structural features including
AMPs rich in cysteines, β-sheet AMPs (α-defensins and β-defensins) and AMPs with α-helices (LL-37
Cathelicidin, Cecropins, and Magainins). AMPs with extended confirmation are high in histidine,
arginine, proline, glycine, and/or tryptophan and peptide loops have a single disulfide link
(Bactenecin). Many of the antimicrobial peptides (AMPs) are amphipathic in non-polar solvents and
contain positive charges. Through electrostatic interactions, they cling to the negatively charged
cell membranes of bacteria disrupting their functions and ultimately causing these single-celled
organisms to perish. These pore-forming peptides attack the membranes of cancer cells and can
cause necrosis or apoptosis which results in the death of cells [18, 19]. Antimicrobial peptides or
AMPs not only cause disruption of the mitochondrial membrane during programmed cell death
(apoptosis) but also assault negatively-charged molecules on the malignant surface of cells which
causes breakdown of cells thereby leading to necrosis-induced cell death. In addition to AMPs,
other venom-like peptides that lyse bacterial and eukaryotic cell membranes have also been
discovered including Melittin and Masteroplans [20-23].

  2.1 Mechanism of action of membrane active biopeptides for
anticancer activity  

The target membrane and the peptide’s properties determine the mechanism underlying the
membrane disruption or membranolytic activity of bioactive peptides which in turn affects the
peptides toxicity and selectivity. There are various ways in which membrane rupture can happen
which includes pore formation in the lipid (barrel-stave and toroidal pore models), thinning of the
membrane bilayer and dissolution (carpet model) and apoptosis or cell death via the mitochondrial
pathway are illustrated below [24]:

  2.1.1. The barrel-stave model  

This model explains how peptides diffuse and enter the lipid bilayer of a membrane by organising
themselves into helices which create channels that stretch and span the membrane. Several well-
known bioactive peptides such as Melittin (from the European honey bee), Pardaxin (from the Red
Sea sole), Cecropins (from moths) and Magainins (from frogs) promote cell lysis via pore formation.

  2.1.2. Toroidal model  

In this model, the pore wall is formed by lipid head groups and bioactive peptide are aligned
parallel to the membrane and a water pore is positioned centrally. Magainins (derived from bee
venom), Melittin (from frogs) and Protegrins (from porcine leukocytes) follow this mechanism of
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action.

  2.1.3. Carpet model  

The “carpet” model describes how peptides attach themselves parallel to the membrane surface
without creating pores, yielding a model like a carpet when combined with more peptide
monomers. Micelles are created when the membrane is disrupted and at a specific peptide
concentration, the membrane structure is damaged in a way similar to that of detergents.

  2.1.4. Apoptosis or cell death via the mitochondrial pathway  

Some bioactive anticancer peptides cause apoptosis or cell death via the mitochondrial pathway in
addition to causing cell death through disruption of the plasma membrane. The mechanism of
necrosis is the early opening of the inner mitochondrial membrane (IMM) and formation of
mitochondrial permeability transition pore (mPTP) which stops ATP synthesis. This allows a lot of
water and other small solutes to enter the mitochondrial matrix through electrochemical gradients
causing severe osmotic swelling in the mitochondria which leads to necrotic death. Additionally,
certain pro- apoptotic substances are released during mitochondrial outer membrane
permeabilization (MOMP) including endonucleases, second mitochondria-derived activator of
caspase (Smac), cytochrome c (Cyt c) which activates caspases and apoptosis-inducing factor (AIF).
In breast cancer cells, the antimicrobial peptides NRC-03 and NRC- 07 from the Atlantic flounder
target results in mitochondrial damage and a induces a loss of transmembrane potential. In
addition, the peptide inhibits the synthesis of DNA or promotes the generation of reactive oxygen
species (ROS) and apoptosis via mitochondrial-dependent apoptosis. The Japanese sea hares urilide
specifically binds to prohibition 1 (PHB1) in the inner membrane of mitochondria, initiating the
proteolytic processing of ocular atrophy1 (OPA1) and causing apoptosis that is triggered by the
mitochondria induced apoptosis. Additionally, it prolongs mitochondrial fragmentation by boosting
OPA1 processing which results in the loss of membrane potential and induce apoptosis. Goat spleen-
derived ACBP inhibits the cell cycle and reduces the expression of the genes c-myc, cyclin D1, bcl-2
and PCNA hence inducing apoptosis. Additionally, it raises the expression of p27Kip1, p21Waf1 and
p16Ink4. By altering the PARP-p53-Mcl-1 signalling pathway, ACBPs also prevent the development
of human colorectal cancer cells and cause apoptosis.

  3. Natural Bioactive Peptides with Anticancer Activity  
Active peptides have gained significant attention because of the praiseworthy benefits they have on
human health. Because of their small size, lesser toxicity, higher permeability and capacity to
diffuse across cells active peptides have several advantages as an alternative medication. One such
benefit is their ability to deeply permeate tissues. Table 1 below lists bioactive peptides with
anticancer properties from several sources.

Source Peptides Mechanism Cancer type Cancer cell line References
Goat spleens or
livers

ACPB Inhibits HCT116
cell growth,
enhances UV-
induced apoptosis,
enhances the
expression levels of
PARP and p53 and
suppresses the
expression of Mcl-1

Human colorectal
tumor cell line

HCT116, GCSCs,
BGC-823 and
CD44+ cells

[25, 26]

Cyanobacteria/ Apratoxin A Inhibition of Cell Cervical cancer HeLa [27]
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Lyngbya boulloni cycle
Frog/Litoria aurea
and Litoria
raniformis

Aurein 1.2 Interaction with
lipid membrane of
T98 G cells

Glioblastoma
multiforme

T98 G cells [28-30]

Marine/ Japanese
sea hare Dollabella
auricularia, marine
cyanobacterium,
Lyngbya majuscula

Aurilide Mitochondria-
induced apoptosis

NA NCI-H460 human
lung tumour, the
neuro-2a mouse
neuroblastoma,
leukaemia, renal,
and prostate cancer
cell lines

[31]

Fungi/ Fusarium sp. Beauvericin Growth inhibition,
apoptosis induction
via mitochondrial
pathway

Human epidermoid
carcinoma

KB [32]

Cyanobacteria /
Nostoc linckia and
Streptomyces
griseus

Borophycin Cytotoxicity Epidermoid
carcinoma and
human colorectal
adenocarcinoma

LoVo and KB [33, 34]

Bovine/Bos Taurus Bovin Lactoferricin Induce apoptosis Leukemic and
neuroblastoma cell

Meth A [35]

Limnonectes
fujianensis

Brevinin Penetrating into the
lipidic bilayer
causing death of
cells

Lung cancer,
melanoma cell,
glioblastoma, colon
cancer cell

U251MG, HCT116,
MDA-MB-231,
SW480, A549,
H460, SMMC7721,
B16-F10

[36]

Rana ridibunda Brevinin 2R Lysosomal death
and autophagy-like
cell death

Breast
adenocarcinoma,
and lung carcinoma
cell

HeLa, MCF-7, A549 [37]

Bufo bufo
gargarizans

Buforin IIb Mitochondrial
apoptosis

Leukaemia, breast,
prostate, and colon
cancer

hepG2MCF-7, MDA-
MB-231, PC-3,
DU145

[38]

Goat/Capra hircus ChMAP-28 Cytotoxic activity NA HL-60, A431,
SKBR-3, HEK 293
T, HEF, NHA

[39]

Larvae of Bombyx
mori

CecropinXJ Growth Inhibition Bladder cancer,
HCC, gastric
carcinoma,
fibrosarcoma and
leukaemia cells

Huh-7 [40]

Fungus/
Acremonium
persicinum

Cordyheptapeptide Cytotoxic activity Oral human
epidermoid
carcinoma, breast
cancer, and small
cell lung cancer

SF-268, MCF-7,
and NCI-H460
tumour cell lines

[41, 42]

Cyanobacteria/
Spirulina platensis
(C-phycocyanin by
cyanobacteria)

C-phycocyanin (C-
PC)

Apoptosis induction NA HeLa cells [33]

Cyanobacteria/
Nostoc sp. ATCC
53789 and Nostoc
sp. GSV 224

Cryptophycin-52 Disruption of
tubulin-dynamics

Drug-resistant
murine and human
solid tumours

Human tumour cell
lines

[43]

Cyanobacteria /
Lyngbya majuscula

Curacin A Inhibition of tubulin
polymerization by
binding at
colchicine site

NA Leukemic cell
L1210

[44]

Wasp/Oreumenes
decoratus (wasp
venom)

Decoralin (Dec-
NH2)

Decoralin is an α-
helical peptide that
cause necrosis of
MCF-7 cells

Breast cancer MCF-7 [45]

Humans/ Homo
sapiens

α-Defensins Cytolytic activity Human myeloid
leukaemia cell line

U937, HCT-116,
MCF-7, A549, PC-3,

[46]

                             5 / 15



Asian Pacific Journal of Cancer Care
Vol 9 No 4 (2024), 801-811
Review and Meta-analysis

HeLa
Humans/ Homo
sapiens

β-Defensin-3 Binding to cell
membrane causing
cytolysis

Several cancers HCT-116, MCF-7,
A549, PC-3, HeLa,
U937

[47]

Frog/Pithecopus
(Phyllomedusa)
hypochondrialis

Dermaseptin- PH Cell membrane
permeability
disruption

Several cancers MCF-7,
H157,U251MG,
MDA-MB- 435S,
and PC-3

[48]

Cyanobacteria/
Lyngbya majuscula

Desmethoxymajusc
ulamide C (DMMC)

Actin
depolymerization

Human colon HCT-116 [49]

Ascidian Diazona
chinensis

Diazonamide A Inhibition of
Tubulin
Polymerization,
Blocking of cell
division

Human tumor cell,
human cervical
carcinoma,
osteosarcoma cells

HeLa cell [50]

Cyanobacteria/
Phormidium tenue

Digalactosyl
diacylglycerols
(DGDGs)

Inhibition of TPA-
inducing formation

Breast cancer cells NA [37]

 D-K6L9 Reduce
neovascularization

Breast and prostate
cancer cell lines

PC-3, MCF-7 [51]

Brown seaweeds Fucoxanthin Apoptosis induction
through up-
regulating the
expressions of
beclin-1, LC3, and
cleaved caspase-3
(CC3) and by down
regulating Bcl-2

Gastric cancer SGC7901 [52]

Spider/
Acanthoscurria
gomesiana

Gomesin Carpet model for
destroying the
membrane

Murine and human
cancer cell lines
along with
melanoma and
leukaemia

PC-3, MDA-MB-231 [53]

Cyanobacteria/
Hapalosiphon
welwitschii

Hapalosin Increasing the
accumulation of
drugs taxol and
vinblastine in P-
glycoprotein
overexpressing
cancer cell

Multi-drug-
resistance (MDR),
human ovarian
cancer

SKVLB1
(adenocarcinoma
cell line)

[54]

Marine sponges Hemiasterlins Inhibitory effect on
microtubule
assembly, cell cycle
arrest, Apoptosis
induction

Ovarian cancer
cells

SKOV3 [55]

Fish / Mozambique
Tilapia
(Oreochromis
mossambicus)

Hepcidin Apoptosis induction Human cervical
carcinoma,
hepatocellular
carcinoma, breast
adenocarcinoma
cell line

HeLa, HepG2,
MCF-7

[56-58]

Sponge/ Jaspis
stellifera

Jaspamide
(Jasplakinolide)KT2
and RT2

Caspase-3
activation and
decreased protein
expression of Bcl-2,
induction of actin
polymerization,
Apoptosis induction

Prostate cancer
cell, human
promyelocytic
leukaemia

HL-60, U937,
THP-1

[59]

crocodile (C.
siamensis)leukocyt
e

KT2 and RT2 These peptides act
as death ligands
and could
upregulate death
receptors including
TRAIL R2, Fas and
TNF RI.

NA HeLa cells [60]
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Marine mollusk/
Elysia rufescens

Kahalalide F (KF) Infraction of
mitochondrial
membrane and
disrupts
permeability of
lysosomal
membrane

Ovaries, breast,
prostate, colon, and
liver tumor cells

NSCLC, breast,
hepatic, ovary,
prostate and colon
cancer cell line

[61]

Mangroveendophyti
c fungus /
Lasiodiplodia sp.
318 #

Lasiodiplodin Cytotoxic Human cancer cell
lines

THP1, MDa-
MB-435, A549,
HepG2, HCT-116
and THP1

[62]

Humans/ Homo
sapiens

LL-37 Toroidal pore
mechanism

Human oral
squamous cell,
carcinoma cells

PC-3, MCF-7,
HT-29

[63]

Skin of African
clawed frog,
Xenopus laevis

Magainin Induction of
apoptosis

Human cervical
carcinoma

HeLa cell [64]

Fungi /
Microsporum cf.
Gypseum

Microsporins A and
B

Inhibitors of
histone deacetylase

Human colon
adenocarcinoma

HCT-116 [65]

Housefly/ Musca
domestica

MDPF Inhibition via
switching on the
Th1-based
protective cell-
mediated immunity.

Sarcoma cancer S180 [66]

Fungi
/Microsporum sp.,
Aspergillus sp. and
Eurotium rubrum

Neoechinulin A Induce cell
apoptosis via down-
regulation of Bcl-2
expression, up-
regulation of Bax
expression and
activation of the
caspase-3 pathway

Human cervical
cancer

Cervical carcinoma
HeLa

[67]

Frogs/
Phyllomedussa
bicolor

Phylloseptin-PH Penetrating into the
lipidic bilayer
causing cell death

Breast cancer cells
MCF7, breast
epithelial cells
MCF10A

HeLa, MCF-7, A549 [68]

Tunicate /
Applidium albicans

Plitidepsin Cell-cycle arrest,
growth inhibition
and apoptosis
induction

Effective against
various cancer
types such as
breast, thyroid,
lung and so forth

Various cell lines
such as PC12, HeLa
cell, MDA-MB-231
and so forth

[69]

Fungi / Penicillium
sclerotiorum M-22

Penicilazaphilones
B and C

Cytotoxic Human skin cancer
and gastric cancer

B-16 (Melanoma
cells), SGC-7901
(gastric cells) and
M-10 (mammary
epithelial cells)

[70]

Frogs/ Hoplobatrac
hustigerinus

Ranatuerin-2PLx Cell apoptosis Prostate cancer cell PC-3 [71]

Fungi /
Scopulariopsis
brevicauli

Scopularide A and
B

Growth inhibition Pancreatic and
colon tumour cells

Colo357, Panc89,
HT29

[72]

Fungi /
Simplicillium
obclavatum
EIODSF 020

Simplicilliumtides
A, G, E, H

Cytotoxic Human leukaemia HL-60, K562 [73]

Horseshoe crab/
Tachypleus
tridentatus

Tachyplesin Disruption of
plasma membrane
by interacting with
lipids

Prostate, Melanoma
and endothelial
cancer cell

TSU (prostate), B16
(melanoma)

[74]

Marine
actinomycete/
Micromonospora
marina

Thiocoraline Arrest in G1 phase
of the cell cycle,
decrease the rate of
S phase

LoVo and SW620
human colon
cancer

NA [75]

                             7 / 15



Asian Pacific Journal of Cancer Care
Vol 9 No 4 (2024), 801-811
Review and Meta-analysis

progression
towards G2/M
phases

Fungi / Calvatia
caelata

Ubiquitin-like
peptide

Ribonuclease and
cell-free translation
inhibiting activities

Breast cancer Splenocytes cell
lines

[76]

Fungi
/Paecilomyces
variotii EN-291

Varioloid A, B Cytotoxicity Human lung
adenocarcinoma
cells, colon
carcinoma cells and
hepatoma cells

A549, HCT116, and
HepG2

[77]

Fungi / Aspergillus
versicolor (ZLN-60)

Versicotides A and
B

Cytotoxicity NA P388 cell line [78]

Ascidian
/Diplosoma virens
Marine ascidians/Di
demnum
cuculiferum and
Polysyncranton
lithostrotum

Virenamides A–C Inhibition of
topoisomerase II
enzyme

NA P388, A549, HT29,
and CV1

[79]

Ascidian /
Diplosoma virens
Marine ascidians/Di
demnum
cuculiferum and
Polysyncranton
lithostrotum

Vitilevuamide Inhibition of tubulin
polymerization

Lymphocytic
leukaemia

P388 [80]

Fungi
/Zygosporium
masonii

Zygosporamide Cytotoxicity Central nervous
cancer (CNS), renal
cancer

NCI 60 SF-268 RXF
393

[81]

Table 1. Sources of Bioactive Peptides and Mechanism of Action on Different Cell Lines to Treat Different Cancer
Types.  

  4. Production of Anticancer Peptides  
Majority of research investigations have proven the beneficial biological effects of extracted
peptides which are derived from plant or animal protein sources. The process of extracting a
bioactive peptide from the original protein can be achieved in a number of ways including
enzymatic breakdown, microbial fermentation and gastrointestinal tract digestion. Enzymatic
hydrolysis is the main method used to produce bioactive peptides because it produces no toxic
secondary metabolites and simulates gastrointestinal digestion which reduces reaction time.
Commercially accessible enzymes such as pepsin, pancreatin, flavorzyme, alcalase, trypsin,
chymotrypsin, and papain are used to extract bioactive peptides having anticancer potential [82].

  5. Classification of Anticancer Peptides  
ACPs can be classified into four typical classes, based on their secondary molecular structures [83]:

  5.1. α-Helical anticancer peptides  

One of the main groups of ACPs with short sequences made up of fundamental amino acids like
arginine and lysine are the ones with α-helical structures. Two types of hydrophilic amino acids that
helps to produce peptides with net positive charges at neutral pH are arginine and lysine which
have amine and guanidinium groups in their side chains [84]. When compared to lysine, a stronger
potential for electrostatic attraction and hydrogen bonding with a high affinity for the anionic
membrane exists for arginine due to presence of guanidinium group [85]. On the other hand,
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arginine is less hydrophobic than lysine with ε-amino groups in the side chain. The long, nonpolar
alkyl side chain of lysine can be integrated into the hydrophobic region of the cell membrane which
increases the cytotoxicity of α-helical ACPs against cancer cells [86]. ACPs’ hydrophobicity can
affect their biological activity in addition to their positive net charge [87]. ACPs often include up to
30% hydrophobic residues which causes the molecules to adopt a helical shape in hydrophobic
environments with both polar and nonpolar faces [88]. Increased hydrophobicity on the nonpolar
face of peptides increases their helicity and capacity for self-assembly allowing for a deeper
insertion into the hydrophobic region of the cell membrane and consequently a greater chance of
pore or channel formation in the membrane of the cancerous cell [89]. As a result, ACPs that are
more hydrophobic have better anticancer and haemolytic properties against malignant cells. It
includes bovine myeloid antimicrobial peptide (BMAP), melittin, cecropins and magainins.

  5.2. β-Sheet anticancer peptides  

The second class of ACPs exhibits a β-sheet structure with two to eight cysteine amino acids that
forms one to four pairs of intramolecular S–S bonds with at least two β-strands. The creation of
disulfide bonds in the β-sheet of ACP molecules is frequently necessary for the maintenance of the
structural stability and biological functions of peptides. Amphipathic properties are also displayed
by the β-sheet peptide which has polar and non-polar sections that are scattered spatially. After
connecting with phospholipid membranes, ACPs do not undergo conformational changes due to
their highly stable β-sheet architectures. One of the more studied cationic ACPs is defensin which
has residues ranging from 29 to 45 amino acids. An ACP called defensin is made up of three to six
disulfide bonds that produce hydrophobic and hydrophilic domains that are spatially separated in
cyclic triple-stranded β-sheet structures. Moreover, the types of defensin can be identified by the
position and configuration of intramolecular disulfide bonds in the peptides. For example, α-
defensin has disulfide bonds in positions Cys1–Cys6, Cys2-Cys4 and Cys3–Cys5, while β-defensins
are characterised by Cys1–Cys5, Cys2-Cys4 and Cys3–Cys6. Defensins capacity to fight cancer is
largely dependent on their ability to form cyclic cysteine ladder conformation which maintains the
cyclic backbone’s structure and molecular stability. The capacity and selectivity to bind with cancer
cells are enhanced by the stable cyclic structures, large surface area and decreased conformational
flexibilities [90].

  5.3. ACP’s with elongated formations  

Amino acids including arginine, proline, tryptophan, glycine and histidine are commonly enriched
with elongated ACP forms but they lack in traditional secondary topologies. Only non-covalent
interactions such as hydrogen bonds can stabilise the stretched structures [91]. PR-39 is typically a
linear ACP that is isolated from swine neutrophils and composed of proline (49%) and arginine
(24%) having 39 amino acid residues and it is an irregularly shaped protein [92]. Through the
induction of syndecan-1 expression, PR-39 demonstrates anticancer activity on human
hepatocellular carcinoma cell lines. Another class of ACP produced from glycine-rich insects is
Alloferon which can activate natural killer cells. [93]

  5.4. Cyclic anticancer peptides  

The head-to-tail cyclization peptide backbone or disulfide connections that make up cyclic ACPs
exhibit far greater stability than linear molecules [94]. Diffusa cytides 1-3 are novel cyclic peptides
that were isolated from the white snake plant’s leaves and roots. They have been shown to inhibit
the development and migration of prostate cancer cells in vitro [95]. Another cyclic pentapeptide,
H-10 has shown to be cytotoxic to mouse malignant melanoma B16 cells in a concentration-
dependent manner but it does not appear to be cytotoxic to human peripheral lymphocytes or rat
aortic smooth muscle cells [96, 97]. Cyclic ACPs make up the majority of ACPs in therapeutic trials
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due to their potent inhibitory effect against cancer cells.

In conclusion, since time immemorial, natural products have played a significant role in drug
development and pharmacotherapy particularly in the treatment of cancer. Currently there is a
heightened focus on identification of anticancer drugs that are highly effective with minimal
toxicity. It is thought that biologically active peptides derived from natural sources have a variety of
functions such as antibacterial, anticancer and antioxidant potential. There is growing evidence
that naturally occurring biopeptides with carcinogenic properties can cause cell death by binding to
several different cellular proteins and initiating the apoptotic process through both extracellular
and intracellular pathways. The review aims to summarize the various natural peptides obtained
from various sources and highlights the property, classification and mechanism of action on various
cell lines. Therefore, peptides being safer, highly selective, efficacious and well tolerated has
garnered interest of patients as a better alternative for cancer therapy and it will help broaden the
applicability of bioactive peptides as potent therapeutic agents for the treatment of unmet medical
needs of cancer.
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